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Neutrinos are chargeless particles that very rarely interact with other matter, making it diffi-
cult to detect them and the oscillations between their three flavors. Many open questions remain
about neutrinos, including what their masses are and whether they play a role in explaining the
matter-antimatter asymmetry in the universe. To detect these particles, we use Liquid Argon Time
Projection Chambers (LArTPC) which produce high resolution images of the charge deposits that
result from neutrino interactions in the detector medium. Interpreting these images can be im-
proved by implementing machine learning (ML) models, such as NuGraph2, a graph neural network
(GNN) that performs categorization on the deposited charge. ML models train on simulated data,
but differences between the detector simulation and real data present a challenge when applying
these tools. We evaluated the impact of such differences in the detector’s charge response on Nu-
Graph2’s ability to accurately categorize charge into particles. We found that NuGraph2 presents a
detector modeling uncertainty comparable with traditional reconstruction methods, suggesting that
this algorithm is robust and can effectively be used on experimental data collected by the detector.
Additionally, we trained a prototype ML model to separate between the two photon decays of n and
70 particles, which could improve the detection of higher-order resonances in neutrino interactions.

I. INTRODUCTION

The Standard Model (SM) of particle physics describes
the universe’s fundamental particles and how they inter-
act with each other. However, it is well-known that this
model is incomplete, and high energy particle physics
experiments search for new physics beyond the Standard
Model (BSM). The subfield of neutrino physics uses the
small and uncharged neutrino to probe the anomalies
which have defined this particle’s experimental measure-
ments. The neutrino was first proposed in the 1930’s as
an explanation for the missing energy in atomic beta de-
cay. Once it was first detected in the 1950’s, deficits in
the experimental neutrino fluxes compared to theoretical
prediction spurred an international effort that resulted
in the discovery of the three flavors of neutrinos and the
phenomenon of neutrino oscillations. Now, the next gen-
eration of detectors has been designed to constrain the
parameters describing these oscillations well enough to
make strong claims about the fundamental nature of neu-
trinos and BSM physics.

Neutrinos (v) are chargeless and only interact with one
of the fundamental forces included in the SM, the weak
forceE| So, compared to charged particles such as an
electron (e) or a muon (), neutrinos can only be de-
tected when they interact with matter and create other
charged particles. One interesting phenomenon we find
with neutrinos regards their three different flavors: the
electron neutrino v., the muon neutrino v, and the tau
neutrino v,. They are named based on their correspond-
ing charged lepton (electron e, muon u, tau particle 7)

1 The three forces are the electromagnetic, strong, and weak forces.

that often appear in interactions together with each fla-
vor of neutrino. Surprisingly, while neutrinos propagate
through space — such as from a neutrino beam to a neu-
trino detector — their flavor can change [1]E|

Based on our theoretical models of neutrino oscilla-
tions, the experimental discovery of this profound phe-
nomenon requires neutrinos to have non-zero mass. The
neutrino was first included in the SM as a massless par-
ticle, suggesting some new physics is needed to explain
the origin of their mass. Additionally, their masses are
on the order of 10° times lighter than the next light-
est particle, the electron. The mechanism behind these
small masses is still unknown, and better understand-
ing this fundamental particle will benefit from extremely
precise measurements of neutrino oscillations. Neutrinos
could also be the key to explaining the matter-antimatter
asymmetry in the universe, as well as many other open
questions in particle physics.

A. Neutrino Detectors

Since it isn’t possible to directly ”image” neutrinos due
to their lack of charge, neutrino detectors rely on study-
ing the interactions between a high-flux neutrino source
and a large target medium. Liquid Argon Time Pro-
jection Chambers (LArTPC) such as the MicroBooNE

2 More technically, each flavor is an observable state of a neutrino,
but the mass eigenstates (v1, v2, v3) of the neutrino Hamilto-
nian are different. Each flavor is a superposition of the under-
lying mass states, which oscillate between each other and cause
the wave function of the neutrino to change as it moves, hence
allowing non-zero probabilities that it is measured as a different
flavor.
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FIG. 1. Diagram of the LArTPC detector and the wire col-
lection system. Copied from [3].

detector [2] contain tanks of liquid Argon that occasion-
ally interact with the incoming neutrinos. Based on the
particles that come out of the interaction, experiments
are able to determine which interaction mode occurred
and the flavor of the incident neutrino.

In the left part of Figure [I] the neutrino interaction
releases two charged particles. As these charged parti-
cles move through the detector, they disturb the valence
electrons of the Argon. This leaves behind a trail of free
electrons and Argon ions in the wake of each particle.
The applied electric field in the detector then separates
the free electrons from the Argon ions and measures the
positions of the electrons as they travel past a series of 3
wires planes. The fact that Argon is a noble gas allows
the ionized electrons to be collected before reinteracting
inside the detector volume. Moving charges induce cur-
rent in the wires, so as an electron moves past the first
two wire planes and is collected in one of the wires in the
third plane, a pulse of current indicates the electron’s
location. Combining this with the time it takes for the
electrons to travel from the initial deposition results in a
3D reconstruction of the neutrino interaction.

This method makes it possible to achieve fine spacial
resolution and create detailed pictures of the neutrino
interactions, such as Figure With this rich data, the
challenge now becomes developing algorithms that can
categorize the different particles based on their signature
of charge deposition and determine the kinematics of the
interaction. Only then can the properties of the electri-
cally neutral neutrino, which doesn’t deposit any charge
along its path, be deduced.

Great experimental progress over the last three
decades has resulted in strong models about neutrino os-
cillations. By measuring the neutrino oscillation proba-
bilities at different combinations of energy and distance,
all but a few of the parameters describing the rate and
frequency of oscillations between each flavor-pair have
been determined. The DUNE experiment [4] plans to
target the remaining degeneracies in these oscillation pa-
rameters: namely the mass-ordering and potential CP-
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FIG. 2. Example of an electron neutrino interaction in Mi-
croBooNEL The neutrino (unseen) comes in from the left and
out of the interactions an electron shower above and a proton
below. Red means more charge deposited at that location in
the detector.

violation. However, to reach the required precision to
make confident conclusions about BSM physics, we can’t
rely on building bigger and more expensive detectors. We
also need to improve our analysis techniques in order to
get the most out of the available experimental data.

B. Event Reconstruction and Machine Learning

Reconstructing the particles involved in a neutrino in-
teraction measured in a LArTPC is challenging. Every
neutrino interaction looks unique, so it can be difficult to
define an automated process to classify each event. How-
ever, there are patterns that we can leverage to distin-
guish each particle. Event reconstruction is the process
of quantifying the kinematics of the reconstructed par-
ticles. By improving the tools in this analysis, we can
effectively improve the detection efficiency of the differ-
ent types of neutrino interactions that are recorded in
the detector.

One such tool is NuGraph2 [3]. It is a graph neural net-
work (GNN) that receives a collection of hits (localized
current pulses measured in the detector) and separates
them based on two different metrics. The first is a fil-
ter for background charge, namely from cosmic rays that
pass through the detector during a neutrino interaction.
The second task that NuGraph2 performs is classifying
the remaining charge between five different types of par-
ticles based on the shape of the charge distribution.

The five different categories are: electro-magnetic
(EM) shower, minimally ionizing particle (MIP), highly
ionizing particle (HIP), Michel electron, and diffuse
charge. EM showers are created by electrons and photons
released from the original interaction vertex. For exam-
ple, an electron neutrino interaction typically releases an
electron. As the electron slows down in the detector, it
radiates photons, which pair produce into an electron and
positron pair. This process repeats and cascades into an
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electromagnetic shower, which looks different than the
linear tracks that a muon (released in a muon neutrino
interaction) create. The difference between MIPs and
HIPs is the length of the tracks these particles create,
rate of energy dissipation and density of charge deposi-
tion. Michel electrons come from occasional muon decay,
and diffuse charges are produced from other photons.

NuGraph2 is trained on a simulated version of the
MicroBooNE detector [2]. When validated on similar
simulations, it has 98.0% accuracy for cosmic rejection
and 94.9% accuracy for categorization [3]. However,
known mismodeling of the simulated detector leads to
systematic uncertainties [5]. We quantified the change in
NuGraph2-aided reconstruction when certain corrections
are made to correct this mismodeling.

II. DETECTOR SYSTEMATICS

A. Methods

NuGraph2 was trained on simulated neutrino events
in the MicroBooNE detector. However, no simulation
can replicate the physics inside a real detector exactly.
In [5], a specific parametrization for some of these dif-
ferences was determined. By simulating well-understood
cosmic rays to match measured cosmic interactions in the
detector, they were able to quantify how the response in
the current-collecting-wires changed depending on the lo-
cation and orientation of the cosmic rays in the detector.
These changes are called wire modifications, and they can
be applied to the simulations to generate more realistic
samples. We call samples from the original samples the
“central value”, whereas the samples with the modified
waveforms are called “detector variations”.

To assess the difference between the central value and
the detector variations, we perform a typical analysis
on these different samples and look at how the output
changes. The current analysis uses the modular software
package Pandora [6]. NuGraph2 has been integrated into
the traditional analysis framework to influence the cosmic
rejection and clustering of charge into distinct particles.
The output of this analysis is a large series of variables de-
scribing the different aspects of the interaction. Then, to
simulate a use-case that NuGraph2 is best suited for, we
performed a selection for single electron shower events,
which are produced by v, interactions. This involves pa-
rameters such at the initial energy deposit rate at the
beginning of the shower, as well as the categorization
variable directly from NuGraph2. Along with other pa-
rameters, this forms a v, selection.

The specific limits for these variables are chosen to
balance selection efficiency and selection purity in simu-
lations. Selection efficiency is the percentage of v, events
that actually make it through the selection. Those that
don’t pass the selection often look similar to background
events we are trying to remove. The proportion of non-v,
events that are selected determines the selection purity.
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FIG. 3. The effect of NuGraph2 on selection efficiency and
the detector systematic uncertainty on the selection efficiency.

It is challenging to have both a high selection efficiency
and selection purity since there is a lot of variability in
what these interactions look like. This represents an un-
certainty in the analysis process, and after working to
improve the selection, we must quantify how well we ex-
pect our analysis to perform to make accurate statements
about the experiments uncertainty.

Our simulation samples contain only electron neutri-
nos that produce a single electron shower. This way we
can accurately tell the proportion of these that pass our
selection. We also used samples of neutral current 7°
interactions as a proxy of our background rejection, or
selection purity. We also performed these selections us-
ing analysis done without NuGraph2 as well. In keeping
the original samples the same, the only difference in the
two versions of the code is the addition of NuGraph2.
The rest of the selection was kept as similar as possible
to isolates the effect of NuGraph2 on the uncertainty in
the selection efficiency.

B. Results

We first look at the selection efficiency as a function of
the electron energy. We matched the binning to the pub-
lished energy distribution of the electron showers we are
selecting for [7] [8]. This is because the specific binning
affects the uncertainty in each bin.

In Figure [3] we see a doubling in the selection effi-
ciency with the implementation of NuGraph2 compared
to the traditional reconstruction. More importantly, we
don’t see a significant increase in the relative detector
systematic uncertainty accompanying this improved per-
formance. Averaging the relative uncertainty weighted
across the number of events in each energy bin shows that
the relative detector systematic uncertainty actually de-
creases from 13% to 6.7%. This means that the absolute
uncertainty is remaining relatively constant while the se-
lection efficiency is increasing. We show the different



metrics for this selection summarized in Table [Il

The weighted average takes the absolute or relative de-
tector systematic uncertainty from each bin and performs
an average weighted to the number of events in each bin.
For the single bin, all of the events in each bin are com-
bined before calculating the uncertainty, which results
in smaller values. This is due to the indifference of this
metric to drifting of events between bins and the lower
statistics in each bin. However, an analysis of electron
neutrinos will give values separated into these bins, so
the weighted bin average provides a better estimate for
the performance of NuGraph2 in a typical use-case.

C. Discussion

We see an increase in absolute detector systematic un-
certainty from 1.1% to 1.4% accompanying the imple-
mentation of NuGraph2. This means that our confidence
in the efficiency when applied to real data is slightly re-
duced. Since the selection efficiency is a necessary com-
ponent of the electron neutrino calculation, an increased
uncertainty weakens the precision in the final measure-
ment. However, because NuGraph2 improves the selec-
tion from 9.2% to 21.0%, the relative uncertainty actual
decreases significantly. The absolute uncertainty is still
low enough for us to consider NuGraph2 robust to these
detector modeling uncertainties. With its improved per-
formance, further studies of MicroBooNE data will be
able to leverage NuGraph2 to make more precise mea-
surements with the confidence that this ML model isn’t
introducing too much noise into the reconstruction. All
code from this project is available on |Github.

III. 7 - 7° SEPARATION

A. Motivation

Eta (n) mesons are particles that are produced in
higher-order resonant interactions within the Argon nu-
cleus and are difficult to separate from other background
processes. They are electrically neutral, so their signa-
ture in a LArTPC is dependent on their decay mode.
Luckily, the lifetime of the 7 particle is extremely short,
on the order of attoseconds (10718s), so we can rely on
them decaying inside the detector. The most common
decay mode of the 7 particle is into two photons [I].
However, this decay looks very similar to the two photon
decay of the neutral pion, 7. The key distinction comes
from the kinematics of the two photons, where the en-
ergy and angle between the photons can be combined to
give the invariant (rest) mass of the decayed particle from
Equation [T}

My = \/2E1 Ba(1 — cosb,) (1)

4

The 7 particle is much heavier than the 7°, so M., can
be used to selection out n particles from a background
of 7%, The difficulty is that this selection requires the
complete reconstruction of the photon kinematics, which
introduces a lot of uncertainty into M,,. The current
MicroBooNE 7 selection efficiency is only 13.6%[9].

We would like to determine whether a neural network
can learn these underlying kinematics. If successful, this
would allow us to bypass the uncertainties in reconstruc-
tion and improve the current selection. To be useful,
a comparison with a selection on the di-photon invari-
ant mass would need to show that this model performs
better despite the intrinsic uncertainties that come with
ML. Not only would this improved 7 selection increase
precision in probing neutrino-Argon resonances, but it
would open opportunities to train other models on other
selections that also currently rely on reconstructed kine-
matics.

B. Methods

We based our ML project on the Python-based Point-
NeXt model [I0]. This model takes a set of 3D points
and our configuration outputs a continuous scalar be-
tween 0 and 1. A binary cross entropy (BCE) loss was
used to train the model that lower values (close to 0) pre-
dict that the showers come from a 7° decay while higher
values (close to 1) predict an 7 decay.

BCE = —

zZl -

N
Z [tilog(p:) + (1 — t;)log(1 —p;)]  (2)

Equation [2] is the average loss between the target t;
and the prediction p; across N events. The target, ¢, is
either 0 for 7 events or 1 for i events, so only one of
the terms in the sum is active for a given event. The log-
arithms punish incorrect classifications much more than
it rewards correct classifications. This tends to result in
the model predicting most events that it can’t classify to
be around 0.5.

As in any ML application, acquiring good data is vi-
tal for making sure that the differences between our two
classes is presented in an interpretable way to the model.
We don’t know what these differences are on an individ-
ual parameter scale, but we can control the information
we feed the model. Only the two photon showers is im-
portant for this classification, so we have filtered our data
to only the charges and their positions in the two recon-
structed showers.

In training, we supply the model with certain hyper pa-
rameters which indicate how many parameters the model
has and how they can change in response to the training.
Table [[T] contains a summary of the hyperparameters of
the model. The learning rate is adjusted throughout the
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TABLE I. v. selection efficiency with detector systematic uncertainties with respect to true electron energy. MCC9.10 is the
new version with NuGraph2 and MCC9 is the traditional reconstruction. The absolute uncertainties are direct changes in
the selection efficiency, whereas the relative uncertainties are proportions of the selection efficiency. The total events are the
number of events with true electron energy between 0.05 and 1.55 GeV. The weighted average is performed with respect to
then number of events in each true electron energy bin in Figure

CV Selection Weighted Bin Average Single Bin
Version | Efficiency |[Abs. Uncertainty |Rel. Uncertainty | Abs. Uncertainty |[Rel. Uncertainty
MCC(C9.10 21.0% 1.4% 6.7% 0.43% 2.1%
MCC9 9.2% 1.1% 13% 0.28% 3.0%
TABLE II. PointNeXt Hyperparameters _ O
Hyperparameter Value Description 2000 —n
Learning Rate (LR) 0.001 Gradient step size
Number of Epochs 100 Iterations through the data v 15004
Number of Points 512 Fixed number of points S
Noise Proportion 0.1 Percentage random points S 1000 A
MLPs 256, 128, 64| Multilayer Perceptrons
500 A
training using the AdamW optimizelﬂ [I1]. This dynam- 0 . l ; . .
0 200 400 600 800 1000

ically reduces the learning rate based on the loss function
in each epoch and improves training performance.

In order for PointNeXt to be agnostic to the order of
input points as well as other permutations, it requires
the number of points to be consistent between all events.
So, we need to down-sample events with more points and
up-sample events with fewer points. The down-sampling
is quite simple. We remove the events with the lowest
charge associated with them since they should have the
least weight in the kinematics. It should be noted that
this is a repeatable process that can be performed with-
out knowledge about the truth of the sample.

Up-sampling is a bit more difficult. When adding more
points, we don’t want to leave behind artifacts that the
model can pick up. This would leave information about
the number points before up-sampling and this value is
dependent on the type of particle. In Figure [ we see
that simulated 7% events have fewer points than 7 events.
This leads to 7° events requiring up-sampling more often
than n events. Initially we just added points with zero
charge to the origin, but when reducing the the num-
ber of points, the model would pick up on the difference
between up- and down-sampling. In an attempt to coun-
terbalance this, we instead place these zero charge points
uniformly random in a cube around the origin. Addi-
tionally, we require that a certain percentage of events in
both up- and down-sampled events to be these random
points. This "noise proportion” reduces the visual dif-
ference between the two behaviors and helps the model
escape this particular local minima.

The model was given 30000 events, half for each 1 and
79. This was then randomly split into training, valida-
tion, and test data. 70% is used during the training to in-
fluence the parameters of the model by gradient descent.

3 /AdamW Implementation in PyTorch

Number of Points, n

FIG. 4. Number of points in the reconstructed showers for n
and 7° events. 70 events typically have fewer events, and this
distinction can be picked up by the model if upsampling isn’t
done properly.

15% is used to validate the performance of the model dur-
ing training. Since the validation data doesn’t influence
the learning of the model, it can be a good benchmark for
how well the model will perform on future data. Valida-
tion was perform every other epoch, and the best model
was determined by the minimum validation loss. After
training is completed, the best and last epochs are given
the remaining 15% of the data as a final test.

C. Results

Even after training, the model doesn’t make very
strong predictions. The BCE validation loss was best
in epoch 76 at 0.6303. The confusion matrices in Table
[ITT and [[V] given the percentages of each category that
are predicted as n (p > 0.5) or 7% (p < 0.5).

TABLE III. Confusion matrix between n and 7° predictions
normalized by actual particle class. The 7 selection rate is
57% and the 7° selection rate is 30%. A perfect selection
corresponds to 100% 7 selection rate and 0% w° selection
rate.

Actual Predicted Particle Class
Particle Class 0 n

70 69.9% 30.1%

n 27% 57.3%
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TABLE IV. Confusion matrix between n and 7° predictions
normalized by predicted particle class.

Actual Predicted Particle Class
Particle Class 70 n
70 62.7% 35.0%
n 37.3% 65.0%
1400 4
B 0 (7° -n>512
0 (% -n <=512
1200 4 == 1(p)-n>512
1(n)-n<=512
1000 4
800
5
(e}
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FIG. 5. Best epoch model predictions stacked by a cut on
the number of points, n. Statistically, more of the high point
events are likely to be 7 particles, but the existence of cor-
rectly predicted low n n events is indicative that the model is
not incorrectly learning a simple cut on n.

The continuous predictions on the test samples are
shown in Figure [f] Most of the predictions are close
to 0.5, but there are some stronger predictions above 0.8
that contain mostly 7, which is indicative of some learn-
ing.

The receiver operating curve (ROC) is shown in Figure
@ It shows the trade-off between 7 selection (the bottom
right cell in Table[[[]and the inclusion of 7° events in the
selection (the top right cell in Table as the threshold
for a predicted n is sweeped through the range 0 to 1.
The area under the ROC (AUROC) is representative of
the general confidence of the model in its correct predic-
tions independent of the default 0.5 threshold. A perfect
predictor would have an AUROC of 1, so 0.68 indicates
a minor amount of learning above a uniformly random
prediction.

We know from the invariant mass that there is a kine-
matics relation that can separate n and 7° particles.
These results may show promise that some kinematics
can be learned through ML. However, it may need more
fine-tuning of the hyperparameters and well as a compar-
ison to the di-photon invariant mass selection to assess
its usefulness. All code from this project should be ac-
cessible on |Githubl
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FIG. 6. The receiver operating curve (ROC) for the best
epoch model at varying thresholds required for a 7 prediction.
The circular point and dashed lines indicate the performance
of the default p = 0.5 thresold. The AUROC (Area Under
ROC) is 0.68. The dotted curve is the behavior of a cut using
a simple threshold in the number of points. Since the ROC of
the model isn’t consistent with this baseline, the up-sampling
technique appears to be working.

IV. CONCLUSION

NuGraph2 and our new 7-7° separation model stand
at opposite ends of the ML development process. Nu-
Graph2 was already completely developed, and we just
verified that differences between simulation and real data
don’t pose a large threat to the performance NuGraph2
offers during neutrino reconstruction. While n-7° sepa-
ration seems like a much simpler problem on the the sur-
face, our new model doesn’t appear to have strong per-
formance on heavily processed simulated data. However,
this challenge is indicative of whether ML tools can learn
to make inferences about the kinematics of an interac-
tion. Kinematics are a very high level concept compared
to the space points and charge that our model receives.
This model shows promise that this type of abstraction is
possible, and with further development, it could present
a new direction for event reconstruction algorithms.
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