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The vertebrate body plan emerges during gastrulation, when coordinated cell flows establish the
embryonic axis and generate the three germ layers: endoderm, mesoderm, and ectoderm. While ge-
netic regulation of gastrulation is well studied, the physical mechanisms underlying the coordinated
tissue flows remain poorly understood. In zebrafish, mesodermal convergence toward the dorsal
side is central to body axis formation, and we hypothesize that localized actomyosin contractility
provides the driving force. Here we develop a continuum mechanics framework that links spatial
patterns of myosin II activity to mesodermal flows. Using active gel theory, we construct a minimal
1D-flow model in which the mesoderm is treated as a compressible active viscous fluid. The model
predicts convergence toward myosin-rich regions, consistent with midline formation. Extending the
model to multiple contractile domains predicts that a dorsal–ventral pair of peaks produces dual
axes, while clustered peaks on the dorsal side strengthen convergence without creating new axes.
These results recapitulate features of classic organizer transplantation experiments and show how
complex developmental flows can arise from simple physical principles.

I. INTRODUCTION

Gastrulation is a fundamental stage of vertebrate
development during which coordinated cell movements
generate the three germ layers—endoderm, mesoderm,
and ectoderm—and establish the embryonic body axis
[1]. These large-scale rearrangements set the stage
for organogenesis and ultimately define the body plan.
While the molecular signaling pathways underlying gas-
trulation have been extensively characterized, the phys-
ical mechanisms that drive tissue-scale flows remain less
well understood. In this work, we develop a mechanical
model to investigate how mesodermal flows arise during
zebrafish gastrulation.

The zebrafish embryo provides a powerful system to
study gastrulation mechanics, owing to its optical acces-
sibility and well-defined developmental timeline. Light-
sheet imaging has revealed global flow patterns, with the
mesoderm in particular exhibiting stationary dual-vortex
structures and convergence toward the midline—features
that highlight its central role in gastrulation mechanics.
While imaging has mapped these mesodermal kinemat-
ics, the underlying force-generating mechanisms remain
unclear. Actomyosin contractility is a strong candidate,
as it drives morphogenetic motion in diverse systems [2],
but whether spatial distributions of myosin II are suffi-
cient to account for mesodermal convergence in zebrafish
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remains an open question.
Here, we develop a continuum mechanics framework

to explore how myosin contractility shapes mesodermal
flow during zebrafish gastrulation. Using active gel the-
ory, we construct a 1D-flow model in which the meso-
derm is treated as a compressible active viscous fluid.
This minimal framework yields analytic solutions that
link spatial asymmetries in contractility to convergent
flow. We then extend the model to scenarios with mul-
tiple contractile domains, enabling comparison to clas-
sic organizer transplantation experiments [3]. Together,
these results demonstrate how complex developmental
flows can emerge from simple physical rules, providing
a quantitative link between molecular-scale force gener-
ation and tissue-scale morphogenesis.

II. BACKGROUND

A. Zebrafish Gastrulation

In zebrafish (Danio rerio), gastrulation begins around
5 hours post-fertilization (hpf) and proceeds until for-
mation of the tailbud at approximately 10 hpf [1]. Dur-
ing this period, cells atop the spherical yolk cell undergo
spreading, folding, and coordinated rearrangements that
establish the embryonic body axis. This process is visu-
alized in Figure 1.
A central outcome of these cell rearrangements is the

formation of the three germ layers: endoderm, meso-
derm, and ectoderm. The endoderm, the innermost
layer, ultimately gives rise to the gut and associated or-
gans. The ectoderm, the outer layer, develops into the

mailto:cgarvey@callutheran.edu
mailto:streicha@physics.ucsb.edu
mailto:pieterderksen@ucsb.edu
mailto:wopat@ucsb.edu


2

FIG. 1. Key stages of zebrafish gastrulation (adapted from
Kimmel et al. [1]). Between 5–10 hours post fertilization
(hpf), cells undergo coordinated morphogenetic movements:
epiboly (cell layers spreading over the yolk, 5–10 hpf), invo-
lution at the margin to generate mesoderm and endoderm (6
hpf), and dorsal accumulation of cells to establish the embry-
onic shield (6 hpf). Epiboly ends with formation of the tail
bud, where the embryo then enters the somite stage, during
which segmented somites form along the body axis. Arrows
indicate the embryonic shield and other morphological land-
marks at each stage.

epidermis and nervous system. The mesoderm, posi-
tioned between them, plays a key role in gastrulation.
In addition to forming muscles, the skeleton, and many
internal organs, the mesoderm undergoes large-scale col-
lective flows that contribute directly to axis formation.
Recent quantitative imaging has shown that mesodermal
convergence and extension are central to shaping the em-
bryonic body plan [4–6].

At the tissue scale, convergent mesodermal flows are
essential for midline formation. While the underlying
cellular mechanisms remain an active area of study, ac-
tomyosin networks are strong candidates for producing
the contractile stresses that drive these flows. Studies
have shown that global myosin II distribution is linked
to tension asymmetries during gastrulation in both the
zebrafish and other species [2, 7]. To place these find-
ings in context, we next review the role of myosin II in
generating cellular contractility.

B. Myosin II as a Driver of Contractility

Myosin II is a molecular motor that generates forces
in the actin cytoskeleton of cells by converting chemical
energy from ATP into mechanical work. It slides actin
filaments relative to one another, producing contractile

FIG. 2. Cross-sectional view of a zebrafish embryo during
late gastrulation (around 90% epiboly). The schematic high-
lights the yolk, yolk syncytial layer (YSL), the three germ
layers (endoderm, mesoderm, and ectoderm), and the outer
enveloping layer (EVL). The top panel shows where this stage
falls in Kimmel’s developmental timeline [1].

stress.

FIG. 3. (a) A non-muscle myosin II motor walking along an
actin filament. (b) Myosin motors can assemble into bipo-
lar mini-filaments, generating contractile forces on actin fil-
aments. (c) At the tissue scale, many such motors collec-
tively produce anisotropic active stresses within the acto-
myosin meshwork, which can drive large-scale cellular flows.
Adapted from [8].

At the cellular level, this actomyosin contractility un-
derlies processes such as cytokinesis, migration, and ad-
hesion [8]. At the tissue scale, coordinated myosin ac-
tivity generates contractile stresses that drive collective
flows and large-scale morphogenesis [2]. A key feature
is that the net contractile behavior depends not only on
the activity of myosin itself but also on the organization
of actin filaments. Aligned filaments bias microscopic
motor activity toward global contraction, whereas dis-
ordered networks may balance contractile and extensile
forces [8]. Studies have shown that the spatial distribu-
tion and orientation of myosin motors are predictive of
where and how tissues deform during development [2],
a relationship often formalized within the framework of
active gel theory.



3

C. Active Gel Theory for Myosin II–Generated
Stress

To bridge molecular-scale activity with tissue-scale me-
chanics, theoretical approaches often use active gel the-
ory. In this framework, the actomyosin network is mod-
eled as a compressible active viscoelastic medium with
an internal stress proportional to the local myosin den-
sity [8]. Even though the actomyosin network is complex
at the molecular level, coarse-grained continuum models
with a small number of parameters have been surprisingly
effective at reproducing tissue-scale behavior [2].

In practice, the active stress can be written as

σactive
ij = ζamij , (1)

where ζa represents the magnitude of myosin-generated
tension and mij is a nematic orientation tensor [9]. This
level of description has successfully connected micro-
scopic actomyosin dynamics to continuum mechanics of
epithelial sheets and embryonic tissues. For instance, in
Drosophila, measured myosin distributions are sufficient
to predict gastrulation flow fields [2]. Whether a similar
quantitative relationship applies in zebrafish remains an
open question, motivating our present work.

D. Material Properties and Modeling Assumptions

When applying active gel concepts to zebrafish meso-
dermal movements in gastrulation, it is important to con-
sider the effective material properties of the mesoderm.
Experimental work has shown that posterior mesodermal
tissues behave more like viscous fluids than elastic solids,
as stress fluctuations on minute timescales allow rapid
rearrangements that fluidize the tissue [10]. Guided by
these insights, we describe the mesoderm as a viscous ac-
tive fluid with contractile stress proportional to myosin
distribution. This minimal continuum framework links
spatial patterns of myosin activity to emergent flow fields
and forms the basis for our model.

III. METHODOLOGY

In this section, we outline the modeling framework
used to connect mesodermal myosin activity to large-
scale tissue flows. We begin with a minimal analytic 1D-
flow model, which treats the mesoderm as a compressible
active viscous fluid.

A. Model Geometry

During gastrulation, mesodermal cells involute at the
margin and spread as a circumferential band around the
equator of the yolk cell. To capture this organization in
a minimal setting, we represent the mesoderm as a band

near the equator of the spherical yolk cell. This geome-
try is projected into a planar two-dimensional strip with
periodic boundary conditions in the azimuthal (ϕ) direc-
tion (Fig. 4). Within this strip, we focus on flow along ϕ.
Here ϕ is the azimuthal angle (dimensionless). For an-
alytical tractability, we nondimensionalize length by the
embryo radius R, effectively setting R = 1 in our deriva-
tions. This simplification reduces algebraic complexity
without sacrificing generality, as physical quantities can
be recovered by reintroducing R in the final expressions.
These assumptions capture the essential convergent me-
chanics generated by localized contractility while provid-
ing a minimal setting for analytic solutions.

B. Constitutive Equations

We model the mesoderm’s material properties as a
compressible active viscous fluid characterized by bulk
viscosity ηb, shear viscosity ηs, and contractile activity
ζa. Following the formulation of Behrndt et al. [7], the
total stress tensor is

σij = ηb(∂kvk)δij + ηs
(
∂ivj + ∂jvi − (∂kvk)δij

)
+ ζamij (2)

where vi is the velocity field, δij is the Kronecker delta,
and mij is the myosin orientation tensor.
Although individual cells are effectively incompress-

ible, treating the mesoderm as compressible provides a
useful coarse-grained approximation. As in the work of
Behrndt et al. on EVL and YSL spreading during ze-
brafish gastrulation [7], we allow for effective compress-
ibility at the tissue scale. In this description, apparent
area changes reflect local rearrangements, variations in
tissue thickness, and exchange of cells with neighboring
layers. Representing the mesoderm as a compressible
viscous sheet therefore captures large-scale flows while
permitting local divergence, yielding a minimal and an-
alytically tractable framework for our model.
Since incompressibility is not enforced, we omit an ex-

plicit pressure term. Mechanical equilibrium then re-
quires

∂jσij = 0. (3)

1. Anisotropic active stress.

In active gel theory, filament alignment enters through
mij = ninj , where n is the local filament orientation.
Isotropic networks yield mij ∼ δij , giving uniform con-
tractile stress [7]. Here we instead assume circumferential

alignment, n = ϕ̂, giving

mij = ϕ̂iϕ̂j , (4)



4

so that active stresses project purely along the azimuthal
direction. This anisotropic choice is motivated by the
presence of supracellular actomyosin cables and aligned
contractile structures in other morphogenetic systems
[2, 11]. In zebrafish mesoderm, the organization of ac-
tomyosin is less well characterized, but as a minimal as-
sumption we impose circumferential alignment to test
whether directional contractility alone is sufficient to
drive convergence toward the dorsal midline.

2. Spatial distribution of activity.

The magnitude of active stress is represented as a
Gaussian peak centered at the dorsal side,

ζa(ϕ) = ζ0 exp

[
− (ϕ− ϕ0)

2

2σ2

]
, (5)

with peak strength ζ0, center ϕ0 (dorsal midline), and
width σ controlling how localized the enrichment is.
Combining equations 1 and 5, the active stress tensor

is therefore

σactive
ij = ζa(ϕ)mij = ζ0 exp

[
− (ϕ− ϕ0)

2

2σ2

]
ϕ̂iϕ̂j (6)

3. Final form.

Combining viscous and active contributions, the gov-
erning equation from Eqn 3 is

∂jσ
viscous
ij = −∂jσ

active
ij , (7)

with

σviscous
ij = ηb(∂kvk)δij +ηs [∂ivj + ∂jvi − (∂kvk)δij ] , (8)

σactive
ij = ζa(ϕ) ϕ̂iϕ̂j . (9)

IV. RESULTS

A. Analytic Solution for Azimuthal Flow

We now solve for the velocity profile of mesodermal
flow in the azimuthal direction. The derivation proceeds
in three steps: (i) simplifying the stress contributions,
(ii) formulating the governing ordinary differential equa-
tion (ODE) from force balance, and (iii) solving for vϕ(ϕ)
under periodic boundary conditions.

FIG. 4. Schematic of model geometry and myosin anisotropy.
The mesoderm is represented as a band near the equator of
the spherical yolk cell (left), enriched with myosin on the dor-
sal side. For analysis, this band is projected into a 2D strip
with periodic boundaries in the ϕ direction (right). Myosin
filaments are assumed to be circumferentially aligned, pro-
ducing anisotropic contractile stress along ϕ with a Gaussian
intensity profile.

1. Stress contributions

a. Active stress. Because myosin filaments are as-
sumed circumferentially aligned, the active stress tensor,
Eqn 9 reduces to

σactive
ϕϕ = ζa(ϕ), σactive

θθ = σactive
θϕ = 0. (10)

b. Viscous stress. For the viscous part, Eq 8 simpli-
fies considerably. Since vθ = 0,

σviscous
ϕϕ = (ηb + ηs) ∂ϕvϕ. (11)

c. Force balance. Eqn 3 then reduces to the 1D
equation

(ηb + ηs) ∂
2
ϕvϕ + ∂ϕζa(ϕ) = 0. (12)

2. Solving the ODE

Now we can solve the ordinary differential equation
(12) by integrating twice to obtain an analytic solution
for velocity.

a. First integral. Integrating once gives

(ηb + ηs) ∂ϕvϕ(ϕ) = − ζa(ϕ) + C1, (13)

where C1 is an integration constant.
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b. Second integral (general form). A second integra-
tion yields

vϕ(ϕ) = − 1

ηb + ηs

∫
ζa(ϕ) dϕ+

C1

ηb + ηs
ϕ+ C2, (14)

with C2 another constant determined by boundary con-
ditions.

3. Solving for velocity with Gaussian activity profile for one
peak.

Using the Gaussian active stress profile introduced in
Eq. (5) defined in Section III, the integral in Eq. (14)
becomes∫

ζa(ϕ) dϕ = ζ0

∫
exp

[
− (ϕ− ϕ0)

2

2σ2

]
dϕ.

The standard antiderivative of a Gaussian is given by
the error function [12],∫

exp

[
− (ϕ− ϕ0)

2

2σ2

]
dϕ = σ

√
π

2
erf

(
ϕ− ϕ0√

2σ

)
.

Therefore,∫
ζa(ϕ) dϕ = ζ0σ

√
π

2
erf

(
ϕ− ϕ0√

2σ

)
.

Plugging this into Eq. (14) gives

vϕ(ϕ) = − ζ0σ

ηb + ηs

√
π

2
erf

(
ϕ− ϕ0√

2σ

)
+

C1

ηb + ηs
ϕ+ C2.

To simplify notation, we define

A :=
ζ0σ

ηb + ηs

√
π

2
. (15)

Thus the velocity profile takes the compact form

vϕ(ϕ) = −A erf

(
ϕ− ϕ0√

2σ

)
+

C1

ηb + ηs
ϕ+ C2. (16)

To fix the integration constants, we now impose phys-
ical boundary conditions.

a. Periodic boundary condition. Since the tissue is
modeled as a closed band, the velocity must be periodic
in ϕ:

vϕ(0) = vϕ(2π). (17)

Plugging the general solution (16) into (17) gives

C1

ηb + ηs
2π = A

[
erf

(
2π − ϕ0√

2σ

)
− erf

(
−ϕ0√
2σ

)]
. (18)

Thus

C1 =
ηb + ηs
2π

A

[
erf

(
2π − ϕ0√

2σ

)
− erf

(
−ϕ0√
2σ

)]
. (19)

FIG. 5. Predicted azimuthal velocity (teal, [µm/s]) and ac-
tive stress profile (pink, [N/m]) for a Gaussian myosin distri-
bution centered at ϕ = π. Converted to physical units by rein-
troducing the embryo radius R. Flow converges toward the
contractile region, consistent with experimental observations
of dorsal-directed mesodermal flow. Parameters were chosen
to reflect realistic biological values [7, 10]: ζ0 = 10−4 N/m,
ηs = 1.0 N·s/m, ηb = 1.1 N·s/m (total η = 2.1), and
R = 350 µm.

b. Choice of reference frame for C2. The integration
constant C2 corresponds to a uniform drift of the entire
tissue band, reflecting the fact that only velocity differ-
ences are physically meaningful. To remove this freedom,
we choose a reference frame in which the peak location
ϕ = ϕ0 is stationary:

vϕ(ϕ0) = 0. (20)

Substituting Eq. (16) then fixes

C2 = − C1

ηb + ηs
ϕ0. (21)

c. Final solution. Combining Eqs. (16), (19), and
(21), the closed-form velocity profile is

vϕ(ϕ) = −A erf

(
ϕ− ϕ0√

2σ

)
+

C1

ηb + ηs
(ϕ− ϕ0) (22)

with A given by Eq. (15) and C1 by Eq. (19).

4. Dorsal peak case.

For ϕ0 = π (representing a myosin peak at the dorsal
side), the velocity profile is

vϕ(ϕ) = −A erf

(
ϕ− π√

2σ

)
+

C1

ηb + ηs
(ϕ− π) (23)

5. Multiple Contractile Peaks: Analytic Solution

We now extend the model to cases where the active
stress comprises multiple Gaussian peaks. Biologically,
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this can represent situations in which several myosin-rich
contractile domains coexist along the circumference.

Because the governing 1D balance (Eq. (12)) is linear,
the solution for multiple peaks is the superposition of
single-peak solutions. Let

ζa(ϕ) =

N∑
k=1

ζ
(k)
0 exp

[
−
(
ϕ− ϕ

(k)
0

)2
2σ2

k

]
,

with centers ϕ
(k)
0 , widths σk (radians), and amplitudes

ζ
(k)
0 (N/m). Then the velocity profile is

vϕ(ϕ) = −
N∑

k=1

A(k) erf

(
ϕ− ϕ

(k)
0√

2σk

)
+

C1

ηb + ηs
ϕ+ C2

(24)
with

A(k) =
ζ
(k)
0 σk

ηb + ηs

√
π

2
(25)

Boundary conditions and frame. As in the one-
peak case, a single global pair (C1, C2) applies to the
entire superposed profile: periodic boundary conditions
fix C1, and a frame choice fixes C2 (e.g., zero-mean ve-

locity
∫ 2π

0
vϕ dϕ = 0 or vϕ(ϕ∗) = 0 at a reference angle).

This ensures uniqueness up to a physically irrelevant con-
stant offset in vϕ.

Illustrative scenarios. We consider three representa-
tive stress patterns:

• Dorsal–ventral pair: two equal peaks at ϕ =
0 (≡ 2π) and ϕ = π (Fig. 6).

• Evenly spaced triplet: three equal peaks at ϕ =
0, 2π/3, 4π/3 (Fig. 7).

• Dorsal-biased triplet: three equal peaks local-
ized to the dorsal half, with maxima at ϕ = π (dor-
sal midline) and ϕ = π/2, 3π/2 (Fig. 8).

V. DISCUSSION

A. Converging Flow in the One-Peak Case:
Midline Formation

The one-peak model suggests that asymmetric myosin
contractility can drive large-scale mesodermal flow to-
ward the dorsal side. This prediction is consistent with
biological observations of gastrulation. For example,
Fig. 9 shows dorsal accumulation of cells that form the
embryonic shield, the first visible marker of the future
midline [1]. This shield thickening reflects dorsal-directed
convergence, qualitatively aligned with the flows pre-
dicted by our model.

FIG. 6. Dorsal–ventral two-peak case. Predicted az-
imuthal velocity vϕ(ϕ) (teal, [µm/s]) and active tension profile
ζa(ϕ) (magenta, [N/m]) for two equal Gaussian stress peaks
centered at ϕ = 0 and ϕ = π. The superposed solution yields
symmetric convergent flows toward each contractile domain.
Axes: x is ϕ (radians). Velocities are obtained by solving
Eq. (24) for vϕ(ϕ) and restoring physical units by reintroduc-
ing R. Parameters: ζ0 = 10−4 N/m (both peaks), ηs = 1.0
and ηb = 1.1 N·s/m (total η = 2.1 N·s/m), R = 350 µm.

FIG. 7. Evenly spaced triplet. Predicted azimuthal linear
velocity vϕ(ϕ) (teal, [µm/s]) and active tension ζa(ϕ) (ma-
genta, [N/m]) for three equal Gaussians at ϕ = 0, 2π/3, 4π/3.
Each contractile domain seeds a local convergence; periodic-
ity enforces a global balance across the three. Axes/units and
conversion: as in Fig. 6. Parameters: ζ0 = 10−4 N/m (each
peak), η = 2.1 N·s/m (ηs = 1.0, ηb = 1.1), R = 350 µm.

Further support comes from velocity fields recon-
structed from live imaging (Fig. 10). These flow
maps reveal dorsal-directed convergence during gastru-
lation, consistent with the one-peak model prediction.
This qualitative agreement strengthens the link between
asymmetric contractility and large-scale convergence.

Future work will integrate measured myosin profiles
into the model, extend the framework to fully 3D sim-
ulations, and directly compare model predictions with
live-imaging flow field reconstructions.
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FIG. 8. Dorsal-biased triplet. Predicted azimuthal linear
velocity vϕ(ϕ) (teal, [µm/s]) and active tension ζa(ϕ) (ma-
genta, [N/m]) for three equal Gaussian peaks centered at
ϕ = π/2, π, 3π/2 (dorsal half). Superposition merges the in-
dividual convergence zones into a stronger net flow toward the
dorsal side. Axes/units and conversion: as in Fig. 6. Param-
eters: ζ0 = 10−4 N/m (each peak), η = 2.1 N·s/m (ηs = 1.0,
ηb = 1.1), R = 350 µm.

FIG. 9. Dorsal convergence during zebrafish gastrulation
(adapted from [1]). Cells accumulate dorsally to form the
embryonic shield (boxed), the first visible marker of the mid-
line. Scale bar = 50 µm.

FIG. 10. Experimental trajectories during zebrafish gastru-
lation, reconstructed from live imaging. Convergent flow to-
ward the dorsal side is evident, qualitatively consistent with
the one-peak model prediction of dorsal-directed mesodermal
flow. Image Credit: Vishank Jain-Sharma.

B. Converging Flow in Multi-Peak Cases: Relation
to Organizer Experiments

1. Dorsal–ventral symmetry (two peaks).

For the dorsal–ventral configuration, the model pre-
dicts symmetric convergent flows toward both peaks.
This behavior is reminiscent of the secondary axis for-
mation observed in the classic Spemann–Mangold orga-

nizer transplantation experiments [13], where two sites of
organizer activity could induce two axes.

2. Evenly spaced triplet (three peaks).

When three contractile stresses are evenly distributed
around the circumference, the model predicts three sepa-
rate convergent flows, each aligned with a peak. This ar-
rangement resembles the induction of multiple organizer-
like domains, suggesting that evenly distributed contrac-
tile activity could—in principle—support multiple axis
initiation events.

3. Dorsal-clustered triplet (three peaks).

In contrast, when three peaks are clustered on the dor-
sal side, the flow fields collapse into a single global conver-
gence toward the dorsal half of the tissue. This is qualita-
tively similar to cases where organizer tissue transplanted
near the endogenous dorsal side results not in multiple
axes, but in a broadened or reinforced dorsal organizer
domain. The model thus suggests that clustering of con-
tractile domains can amplify dorsal convergence without
generating additional axes.

VI. FUTURE ENDEAVORS

This work opens several promising directions for fur-
ther study, spanning both theoretical refinement and ex-
perimental validation.

A. Data-informed modeling

A natural next step is to incorporate experimental
measurements of myosin distribution directly into the ac-
tive stress term of the model. Fluorescence intensity can
be used as a proxy for local myosin motor concentration
and activity, as previously demonstrated in Drosophila
gastrulation by Streichan et. al [2]. This approach would
move the model beyond idealized Gaussian profiles and
provide a quantitative link between imaging data and
flow predictions.
As part of my work in the Streichan lab this summer,

we used antibody staining to visualize cytoskeletal ac-
tivity within different tissue layers during gastrulation.
Specifically, tbx16-eGFP served as a mesodermal tissue
marker, while phospho-Myosin (active myosin) was used
as a marker of contractile activity.
To process volumetric datasets from the light-sheet

microscope, we employed a Blender-based tissue car-
tography pipeline. This workflow transforms three-
dimensional (3D) embryo data into two-dimensional (2D)
surface maps, enabling us to isolate individual tissue lay-
ers for analysis. One such map is shown below, where



8

FIG. 11. Maximum-intensity projection of phospho-myosin
signal restricted to the mesodermal tissue layer of a zebrafish
embryo. The inset highlights the dorsal shield region. Flu-
orescence intensity serves as a proxy for local myosin motor
concentration and actomyosin activity.

Image credit: Carys Garvey, Manxi Zhang, Emily Le.

FIG. 12. Multichannel imaging of zebrafish gastrulation.
Global myosin (magenta) and mesoderm (green) are shown,
with the dorsal shield region highlighted (box). Unexpectedly,
myosin signal is weak in the shield itself, with enrichment
mainly at its base. This suggests that large-scale mesoder-
mal convergence may arise from contractile activity outside,
rather than within, the shield.

Image credit: Carys Garvey, Manxi Zhang, Emily Le.

myosin intensity is represented as a maximum-intensity
projection restricted to the mesodermal layer.

A multichannel version of the same dataset further
highlights spatial context. Here, global myosin distribu-
tion is shown in magenta across the entire embryo, while
the mesodermal tissue marker is shown in green.

Our initial experimental results yielded a surprising
finding. We observe less myosin in the mesoderm than
expected, with very little signal in the dorsal shield region
overall.

This unexpected distribution has important implica-
tions for our model. The low overall myosin signal sug-
gests either:

• The magnitude of active stress ζ0 may be lower
than our initial estimates

• Other force-generating mechanisms (e.g., cell-cell
adhesion or forces from adjacent tissues) may con-
tribute significantly to mesodermal convergence

• The spatial pattern of contractility may be more
complex than a simple dorsal peak, potentially in-
volving multiple weak sources that sum to produce
net convergence

Future work will require additional imaging and stain-
ing across gastrulation stages to fully characterize how
myosin II spatial patterns in the mesoderm correlate with
convergent flows. This mesoderm-specific analysis is par-
ticularly novel, as previous studies have typically exam-
ined myosin dynamics in composite tissues rather than
isolating this key germ layer. Resolving this quantitative
relationship is the crucial next step for testing and refin-
ing our mechanical model of mesodermal convergence.

B. Extension to two-dimensional flow

While the present simplified model focuses on circum-
ferential flow, a natural extension is to treat mesodermal
motion in two dimensions. Work is already in progress
on a finite-element implementation in FEniCSx, which al-
lows evaluation of the weak form of the governing equa-
tions to obtain full 2D velocity fields. In this setting,
myosin filaments need not be purely circumferentially
aligned, and complex anisotropies can be explored. Be-
cause current simulations still rely on predicted or pre-
liminary distributions, a continued dialogue between ex-
periment and modeling will be essential.

C. Experimental tests of model predictions

The model also motivates biological experiments that
can directly test its predictions. One avenue is trans-
plantation of organizer tissue at varying positions to ask
whether there exists a minimum separation required for
independent axis formation, or whether closely spaced or-
ganizers instead merge into a single convergent domain.
While the classic Spemann–Mangold experiments estab-
lished that transplanted organizers can induce secondary
axes, the physical length scales that govern when organiz-
ers act independently versus interact remain unknown.
A second avenue is to probe the role of vortical flows.

By altering the spatial extent of transplanted tissue, one
could test whether there are critical vortex sizes required
for stable axis generation. This could help reveal the
geometric and mechanical constraints that set the limits
of axis formation during gastrulation.

D. Broader implications

This work also raises broader questions about whether
similar physical mechanisms are conserved across verte-
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brate species. Although different species employ distinct
morphogenetic strategies during gastrulation, they ex-
hibit striking similarities in the large-scale cell rearrange-
ments that establish the embryonic axis. Could con-
served mechanical principles—perhaps reflecting evolu-
tionary constraints or general energy-minimizing strate-
gies—underlie axis formation across species? This ques-
tion could be a rich area of exploration in biophysics.
Developing a unifying mechanical framework for gastru-
lation would represent an important step toward con-
necting molecular force generation with tissue-scale flows,
and toward understanding how shared physical rules can
give rise to diverse developmental outcomes.
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