o Y=

Reconstructing Neutrino Intera.ctiohs | _;.f;’.""
with Machine Learning

Garrett Kunkler, cal Poly SLO
Mentored by Dr. David Caratelli and Chuyue "Michaelia" Fang
UCSB Physics REU 2025




Outline

What tools do we use
to analyze them? e

y
£ 03]
e HIP e shower éo.z
What are y
4 0.0

neutrinos: ‘ .
. ‘ . . these tools?

\ L
How do we PR

detect them? . " & . ‘}’/




What are Neutrinos?

Mass, Flavor, Oscillations



Neutrinos are the lightest massive particles in the Standard Model

@ Fundamental Particles

® ®

Composite Particles



Three flavors of neutrinos oscillate between each other

-

/ ,
\ 4
g b ot Eneray
science.osti.gov/hep/Facilities/User- m

Facilities/Fermilab-Accelerator-Complex

Booster Neutrino Beam The neutrinos have a MicroBooNE Detector
creates trillions of chance of being detected https://microboone.fnal.gov/images-videos/
neutrinos as an electron neutrino

Oscillations require neutrinos to have mass —— The Standard Model is incomplete
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Motivation for increased precision in neutrino oscillation measurements
Where do the masses of neutrinos come from?

<< Mass of other particles

Multiple competing theories that predict sterile neutrinos

Sterile = Even
@ @ fewer interactions

Neutrinos could help explain matter-antimatter asymmetry via CP-violation



Neutrino Detection
in LArTPC

lonization Charge, Showers vs. Tracks, Charge Collection



Liquid Argon Time Projection Chambers (LAfTPC)

We detect the @
particles coming out ‘

of the interaction
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Different particles leave different charge sighatures
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Different particles leave different charge sighatures

Showers

Neutron

Tracks
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We separate the charges with an electric field

Electric Field

Wires collect current as the electrons move past
Response depends on relative orientation of tracks
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We separate the charges with an electric field

Electric Field

Wires collect current as the electrons move past
Response depends on relative orientation of tracks
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The detector creates images of charge and time

Ny
BNB DATA : RUN“5904 EVENT 2038. APRIL 13, 2016.



The detector creates images of charge and time

10¢m

Ny
BNB DATA : RUN“5904 EVENT 2038. APRIL 13, 2016.



Reconstruction with
NuGraph?2

Application of Machine Learning



Reconstruction algorithms predict what occurred

o In simulations we know the
/ © @© truth about the source of

@ ey ® &© each charge deposit...
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Reconstruction algorithms predict what occurred

© 06
©Xe,
©©.©®
©
© In simulations we know the
© ©, © truth about the source of
) Q) © each charge deposit...

But not on real data
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Neural networks play a crucial role in reconstruction

Types of Particles,

: : : Energies, Velocities
! Particle Categorization

XS,
®®®® M @
ore
NuGraph2 o ——-»——-»
o ©
®©
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NuGraph?2 particle identification performs at 95%
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NuGraph2 Prediction
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These look very similar!

Hewes, V. et al. (2024). Graph Neural Network for Neutrino Physics Event Reconstruction. Physical Review D, 110(3), 032008.
https://doi.org/10.1103/PhysRevD.110.032008
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https://doi.org/10.1103/PhysRevD.110.032008

Detector Modeling
Uncertainties

Wire Modifications, v, Selection Efficiency



How sensitive is NuGraph2 to the uncertainties in real data?

Modify simulated data to create more realistic data samples

Detector Systematic
Uncertainties

Change the wire current
waveforms

Detector Variations
Central Value

Abratenko, P., An, R., Anthony, J. et al. Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. . . . 21
Eur. Phys. J. C 82, 454 (2022). https://doi.org/10.1140/epjc/s10052-022-10270-8 https://microboone.fnal.gov/images-videos/
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Wire modifications

5 Variables

MicroBooNE —— Original Waveform
e Track positions (X, YZ) Simulation —— Modified Waveform
g - —-== Original Hits
* Track angles w.r.t. wire planes (6,5, 0y;)
: dE
Charge scaling (E) e
<
Width and charge of waveforms changed §
to align with experimental data £ 1
2 -
Ex: Scale X
f( / \ ’ X) - - ) L 0 -
52T20 52[25 52130 52135 52]40 52l45
Time [ticks]
Abratenko, P., An, R., Anthony, J. et al. Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. 22

Eur. Phys. J. C 82, 454 (2022). https://doi.org/10.1140/epjc/s10052-022-10270-8
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NuGraph2 is particularly good at picking out electron neutrinos

Apply a series of selection criteria
Looking for an electron shower

Electron neutrinos create electrons Muon neutrinos create muons (and photons)

10¢m

Ny,
BNB DATA : RUN“5904 EVENT 2038. APRIL 13, 2016.
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Example Cut: Distinguishing electrons and photons with shower b

Ve CC B Cosmics oz Uncertainty
v other = Total predicted <4 Data
v NC n°
e/y separation
100 - Electrons MicroBooNE, 1.11 x 102! POT
7

80 A

60 -

Events

Photons

1 2

3 4 5
Shower dE/dx [MeV/cm]

MicroBooNE Collaboration (2024). Search for an Anomalous Production of Charged-Current $v_e$ Interactions Without Visible Pions Across

Multiple Kinematic Observables in MicroBooNE (No. arXiv:2412.14407). arXiv. https://doi.org/10.48550/arXiv.2412.14407

dx

Photon showers
peak at double
the energy of
electron showers
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Example Cut: Distinguishing electrons and photons with shower Z—i

Ve CC B Cosmics 7z Uncertainty
dE v other = Total predicted <4 Data

1< —<3 v NC °
dx

e/y separation
100 - Electrons MicroBooNE, 1.11 x 102! POT
7
80 -
9
g °07 Photons Balance between
40 selection efficiency and
selection purity
20 -
O -

1 2 3 4 5
Shower dE/dx [MeV/cm]
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https://doi.org/10.48550/arXiv.2412.14407

Selection efficiency also varies due to detector systematic uncertainties

Selection efficiency:
The proportion of
target events that are
successfully selected

Detector Systematic
Uncertainty:

The expected error in
the measurement due
to mismodeling in the
detector simulations

Ve Selection Efficiency
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++++ |
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True Electron Energy [GeV]

Colors represent
different detector
variations

Total selection
efficiency is 21%
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Comparison with analysis before NuGraph2 implementation
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n-nm° Separation with
Machine Learning

Two Photon Decay, Initial Training



n and n© particles both can decay into two photons

Both neutral particles that decay very quickly inside the detector
Current selection efficiency of nis 13.6% i1, — \/2E1E2(1 — c0sf..,)

BNB data: Run 8661 Event 603

P. Abratenko et al. (MicroBooNE Collaboration), First measurement of n meson production in neutrino interactions on argon with MicroBooNE, Phys. 29
Rev. Lett. 132, 151801 (2024). https://link.aps.org/doi/10.1103/PhysRevLett.132.151801



https://link.aps.org/doi/10.1103/PhysRevLett.132.151801

The PointNeXt model takes in 3D space points as input

Charge from reconstructed showers

/
. B Complex matrix
- function with Scalar output from
A iaing “T 0(mMto1l
%/" e thousands of (m”) to 1 (n)
= i parameters

160
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Initial training results
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Summary

| | Detector Variation
Neutrino Physics

Detector Systematic Uncertainty

0,@,
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< ©
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| n-m° Separation
Event Reconstruction
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NuGraph2 cosmic filtering performs at 98%

Simulation Truth NuGraph2 Prediction
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Hewes, V. et al. (2024). Graph Neural Network for Neutrino Physics Event Reconstruction. Physical Review D, 110(3), 032008.
https://doi.org/10.1103/PhysRevD.110.032008
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Effect of detector systematic uncertainties on shower 4z

Simulation data
from just v_ events
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Zoomed and rotated view of electron shower in run 7008, event 22297
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Seems to be missing some charge at the beginning
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Three flavors of neutrinos oscillation between each other

W ®» ®

_—_* ________ > _________ *

The neutrinos have a
chance of being detected
as a muon neutrino

Fusion in sun creates
electron neutrinos

KamLAND Detector

http://kamland.stanford.edu/
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Cosmic rays can be mistaken as neutrinos
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@ ey ® @’% ) each charge deposit...
©,
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The energy seems to be reduced in one of the variations

Distribution of errors in shr_tkfit dedx_max between CV and Detector Variations

== -+ wiremod_ScaledEdX
wiremod_ScaleX

0.4 - . = wiremod_ScaleYZ
© = WireModAngleXZ
o ——
=
2
5 0.3 A
o]
2
>
-
C
:
3 0.2 1
2
L
@ ==
= ——
% 0.1 - —-—
o —0—

+1——— =T —a
;++ -
0.0 1

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100
Relative Error in shr_tkfit_ dedx_max [(DetVar - CV)/CV]

50



Changes in measured Z—i with detector variation

dEdx max (Scale X Modification)

2 102
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dEdx_max (Central Value)
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