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Outline

What are 
neutrinos?

How do we 
detect them?

What tools do we use 
to analyze them?

Can we improve 
these tools?
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What are Neutrinos?
Mass, Flavor, Oscillations 
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Neutrinos are the lightest massive particles in the Standard Model
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Composite Particles

Fundamental Particles



Three flavors of neutrinos oscillate between each other
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MicroBooNE Detector
https://microboone.fnal.gov/images-videos/

Booster Neutrino Beam 
creates trillions of 

neutrinos

The neutrinos have a 
chance of being detected 
as an electron neutrino

science.osti.gov/hep/Facilities/User-
Facilities/Fermilab-Accelerator-Complex

Oscillations require neutrinos to have mass The Standard Model is incomplete



Motivation for increased precision in neutrino oscillation measurements

Where do the masses of neutrinos come from?

<<

Multiple competing theories that predict sterile neutrinos

Neutrinos could help explain matter-antimatter asymmetry via CP-violation
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Sterile = Even 
fewer interactions

Mass of other particles



Neutrino Detection 
in LArTPC

Ionization Charge, Showers vs. Tracks, Charge Collection
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Liquid Argon Time Projection Chambers (LArTPC)
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Neutrino beam

We detect the 
particles coming out 
of the interaction

γ



Different particles leave different charge signatures
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Showers

Tracks

Neutron

γ



Different particles leave different charge signatures
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Showers

Tracks

γ

No charge from the neutrino

Neutron



We separate the charges with an electric field
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Electric Field

Wires collect current as the electrons move past
Response depends on relative orientation of tracks



We separate the charges with an electric field
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Electric Field

Wires collect current as the electrons move past
Response depends on relative orientation of tracks



The detector creates images of charge and time
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The detector creates images of charge and time
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Reconstruction with 
NuGraph2

Application of Machine Learning
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Reconstruction algorithms predict what occurred
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In simulations we know the 
truth about the source of 
each charge deposit…

γ



Reconstruction algorithms predict what occurred
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In simulations we know the 
truth about the source of 
each charge deposit…

But not on real data



Neural networks play a crucial role in reconstruction
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NuGraph2 More 
Analysis

Particle Categorization
Types of Particles,

Energies, Velocities



NuGraph2 particle identification performs at 95%
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Simulation Truth NuGraph2 Prediction

Hewes, V. et al. (2024). Graph Neural Network for Neutrino Physics Event Reconstruction. Physical Review D, 110(3), 032008. 
https://doi.org/10.1103/PhysRevD.110.032008

These look very similar!

https://doi.org/10.1103/PhysRevD.110.032008


Detector Modeling 
Uncertainties

Wire Modifications, νe Selection Efficiency 
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How sensitive is NuGraph2 to the uncertainties in real data?

Modify simulated data to create more realistic data samples

21Abratenko, P., An, R., Anthony, J. et al. Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. 
Eur. Phys. J. C 82, 454 (2022). https://doi.org/10.1140/epjc/s10052-022-10270-8 https://microboone.fnal.gov/images-videos/

Detector Systematic 
Uncertainties

Change the wire current 
waveforms

Central Value
Detector Variations

https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8


Wire modifications

5 Variables
• Track positions (X, YZ)
• Track angles w.r.t. wire planes (θXZ, θYZ)

• Charge scaling (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)

Width and charge of waveforms changed 
to align with experimental data

Ex: Scale X
    f(               , X) 

22Abratenko, P., An, R., Anthony, J. et al. Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. 
Eur. Phys. J. C 82, 454 (2022). https://doi.org/10.1140/epjc/s10052-022-10270-8

https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8
https://doi.org/10.1140/epjc/s10052-022-10270-8


NuGraph2 is particularly good at picking out electron neutrinos

Apply a series of selection criteria
Looking for an electron shower
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e

Electron neutrinos create electrons Muon neutrinos create muons (and photons)

γ
μ



Example Cut: Distinguishing electrons and photons with shower 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

24MicroBooNE Collaboration (2024). Search for an Anomalous Production of Charged-Current $ν_e$ Interactions Without Visible Pions Across 
Multiple Kinematic Observables in MicroBooNE (No. arXiv:2412.14407). arXiv. https://doi.org/10.48550/arXiv.2412.14407

Photons

Electrons Photon showers 
peak at double 
the energy of 
electron showers

https://doi.org/10.48550/arXiv.2412.14407


Example Cut: Distinguishing electrons and photons with shower 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  

25MicroBooNE Collaboration (2024). Search for an Anomalous Production of Charged-Current $ν_e$ Interactions Without Visible Pions Across 
Multiple Kinematic Observables in MicroBooNE (No. arXiv:2412.14407). arXiv. https://doi.org/10.48550/arXiv.2412.14407

1 <
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 3

Balance between 
selection efficiency and 
selection purity

Photons

Electrons

https://doi.org/10.48550/arXiv.2412.14407


Selection efficiency also varies due to detector systematic uncertainties
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Total selection 
efficiency is 21%

Colors represent 
different detector 
variations

Selection efficiency:
The proportion of 
target events that are 
successfully selected

Detector Systematic 
Uncertainty:
The expected error in 
the measurement due 
to mismodeling in the 
detector simulations



Comparison with analysis before NuGraph2 implementation
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Improved selection 
efficiency

Comparable detector 
modeling uncertainty



η-π0 Separation with 
Machine Learning

Two Photon Decay, Initial Training 
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η and π0 particles both can decay into two photons

Both neutral particles that decay very quickly inside the detector
Current selection efficiency of η is 13.6%
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γ γ γ
γ

P. Abratenko et al. (MicroBooNE Collaboration), First measurement of η meson production in neutrino interactions on argon with MicroBooNE, Phys. 
Rev. Lett. 132, 151801 (2024). https://link.aps.org/doi/10.1103/PhysRevLett.132.151801 

https://link.aps.org/doi/10.1103/PhysRevLett.132.151801


The PointNeXt model takes in 3D space points as input
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Complex matrix 
function with 
thousands of 
parameters

Scalar output from 
0 (π0) to 1 (η) 

Charge from reconstructed showers



Initial training results
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Actual 
Particle Class

Predicted Particle Class

π0 η

π0 61% 39%

η 31% 69%

π0 predicted as π0 

η predicted as π0 

π0 predicted as η

η predicted as η
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Summary

33

Neutrino Physics

Event Reconstruction

Detector Variation

η-π0 Separation



Backup Slides
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NuGraph2 cosmic filtering performs at 98%

35Hewes, V. et al. (2024). Graph Neural Network for Neutrino Physics Event Reconstruction. Physical Review D, 110(3), 032008. 
https://doi.org/10.1103/PhysRevD.110.032008

Simulation Truth NuGraph2 Prediction

https://doi.org/10.1103/PhysRevD.110.032008


Effect of detector systematic uncertainties on shower 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Simulation data 
from just νe events



Zoomed and rotated view of electron shower in run 7008, event 22297 
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Central Value

Wire Mod. Scale X

Seems to be missing some charge at the beginning

Charge Hits



Three flavors of neutrinos oscillation between each other
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KamLAND Detector
http://kamland.stanford.edu/

Fusion in sun creates 
electron neutrinos

The neutrinos have a 
chance of being detected 
as a muon neutrino



Cosmic rays can be mistaken as neutrinos
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In simulations we know the 
truth about the source of 
each charge deposit…

γ



The energy seems to be reduced in one of the variations
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Changes in measured 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 with detector variation
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1 <
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 < 3
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