
Analyzing HST Fomalhaut b data using Non-negative Matrix

Factorization

Ivan A. Abreu Paniagua
Department of Physics, University of Rhode Island

Department of Physics, University of California Santa Barbara

Dr. Maxwell Millar-Blanchaer
Assistant Professor, Department of Physics, University of California Santa Barbara

Connor Vancil
Graduate Student Mentor, Department of Physics, University of California Santa Barbara

October 2, 2023

Abstract

Since its discovery in 2004, Fomalhaut and its companion, Fomalhaut b, have undergone much inves-
tigation. Originally believed to be an exoplanetary system, the prevailing theory supports the idea that a
collision between two planetesimals resulted in a dust cloud now observed to be Fomalhaut b. In this paper
we further investigate the nature of this object. Unlike previous examinations where point source-based post
processing methods were used, we decide to utilize nonnegative matrix factorization (NMF). NMF works best
for detecting broad and spread sources such as disks and dust clouds. By using NMF, we work to examine
Fomalhaut b and compare results from previous works. Due to its iterative nature, NMF uses significant
computing resources and compile times. To work around this, we implement Google’s JAX NumPy and
Just-In-Time (JIT) compilation to increase efficiency and speeds. By running code on accelerators (graph-
ics processing unit) and JIT’s ability to compile given functions all at once, this allows us to improve on
computing times greatly. The data we use consists of different years of direct imaging of Fomalhaut through
the Hubble Space Telescope coronagraph, that we then use NMF to process. After locating Fomalhaut b
in these images, we then examine its make-up pixels for differences in relative size and brightness across
different years and works.

1 Introduction

Despite being statistically one of the most com-
mon objects in the universe, exoplanets are poorly
sampled. Despite there being an estimated 100 bil-
lion exoplanets in the Milky Way alone, as of August
2023 only 5496 have been discovered across the uni-
verse [8]. One of the many methods astronomers use
to detect and analyze data from planetary systems is
Direct Imaging (DI). Using DI, astronomers attempt
to take a direct snapshot of the space and material
around a star, in hopes of capturing the light from cir-
cumstellar objects [3]. Unlike other methods, DI al-
lows astronomers to gather large amounts of data on
the traits of these objects. Composition, atmospheric

data, and trajectory are some of the characteristics
of exoplanets that can be effectively extracted via DI.
Despite its promise, DI is extremely challenging com-
pared to other methods. Stars are billions of times
brighter than their planets, thus the planet light gets
drowned out. Additionally, one of the consequences
of taking images of these far away systems is the point
spread function (PSF). The point spread function oc-
curs when taking data from sources far enough that
they appear to be a point of light. As one transfers
the image into data, the information gets spread out
across multiple positions, turning these points into
blurs in the resultant image. Stellar PSFs, being
many times brighter than the objects orbiting them,
overlap the light of any planets or disks around them.

1



Due to DI relying solely being able to distinguish the
light from circumstellar objects, this makes the pro-
cess significantly more difficult. Astronomers thus
have to come up with different methods to subtract
the excess noise and bring out the planets.

1.1 Methods of image processing

Reference differential imaging (RDI), angluar dif-
ferential imaging (ADI), and spectral differential
imaging (SDI), often accompanied by more post-
processing methods such as locally optimized combi-
nation of images (LOCI) and Karhunen–Loève image
projection (KLIP) are some of the primary ways to
subtract much of the noise and PSF from stellar im-
ages. All of these methods are suited for calculating
and subtracting the PSFs and noise of point sources,
allowing astronomers to study stars and their sur-
rounding planets. Although these methods are useful
these ideal situations, they often suffer from overfit-
ting and subtracting errors. These errors are espe-
cially prominent in any other sources that are not
point based; i.e. large and spread structures such as
circumstellar disks and clouds. To account for these
errors, methods such as forward modelling are used.
These methods come with their share of complica-
tions, as they are often used for point sources and
not well suited for others [10]. Here we decide to
investigate other methods of image processing that
are able to accurately subtract out stellar PSFs and
construct circumstellar disks.

1.2 Non-negative matrix factorization

Another proposed method of post processing stel-
lar system data is through the utilization of non-
negative matrix factorization (NMF). First proposed
in [9], NMF separates the circumstellar disk from
an image by taking reference images and interatively
builds the components off of them. When building
these components, NMF avoids making any of these
components’ values negative, which helps minimize
over-subtraction. From these reference images and
built components, the NMF method then creates a
model of the given target image. This new model
can then be deconstructed to separate the disk from
the stellar signal. This is done through a forward
modeling method distinct to NMF, which allows the
algorithm to circumvent the drawbacks of standard
forward modeling [14][10]. Due to the current con-
sensus on the nature of our case study Fomalhaut b,
we decided to use NMF in hopes that it can give us
new insight as compared to other processing methods
.

1.3 Fomalhaut b

First observed in 2004 by the Hubble Space Tele-
scope Advance Camera for Survey (HST ACS), Fo-
malhaut b is a circumstellar object orbiting the star
Fomalhaut A about 25.11 ly away [5]. Originally be-
lieved to be an exoplanet, Fomalhaut b has under-
gone extensive investigation. In recent observations,
Fomalhaut b seems to have grown larger and dimmer.
The current prevailing theory is that of a circumstel-
lar collision between two bodies resulted in a dust
cloud perceived to be an exoplanet [4]. This dust
cloud has thus been expanding over the years. For
that reason, we decided to investigate Fomalhaut b
using NMF. NMF has not been applied to Fomalhaut
system before, which opens the possibility for new in-
sight on past Fomalhaut b data. If the cloud model
is accurate, then we hope to see improvements in the
processed data where Fomalhaut b should be, further
solidifying the cloud model as the primary theory.

Figure 1: False color 2012 HST images of Fomalhaut
b processed by [6].

This paper is split into multiple sections detail-
ing this research process. Section 2 explains the pro-
grams used for implementing NMF on target images
as well as some complications with these implemen-
tations and how we can improve on them, as well
as detailing how we use NMF on Fomalhaut data.
In section 3 go over the results of our computations
and compare our results between years. Finally, we
summarize our results and improvements on NMF in
section 5. Additionally, we also go over

2



Run times (sec)
Environment 2010 2012 2013 2014

Mac 265.617± 23.393 1250.604± 359.580 671.398± 43.686 303.906± 41.927
Mueller 172.706± 44.683 1228.121± 159.156 701.357± 132.444 281.781± 46.948

Mueller + JAX JIT 51.725± 11.104 62.464± 7.016 44.299± 1.151 31.108± 6.360

Table 1: Run time comparisons of nmf imaging on different environments. Measured times are for the entire
nmf imaging code.

Run times (sec)
Environment 2010 2012 2013 2014

Mac 265.606± 23.394 1250.585± 359.575 671.385± 43.685 303.893± 41.930
Mueller 172.698± 44.681 1228.113± 159.156 701.349± 132.444 281.775± 46.947

Mueller + JAX JIT 51.718± 11.103 62.456± 7.016 44.291 + 1.151 31.103± 6.360

Table 2: Run time comparisons of nmf imaging on different environments. Measured times are for the func-
tions in the nmf imaging code that are effected by implementing JAX; when building the components and
model.

2 Methods

Most of our work is done in Python, utilizing a va-
riety of programs to access Fomalhaut data and then
process them. External programs such as SAOIm-
ageDS9 will be used to visualize data before and after
processing.

2.1 Fomalhaut Data

The data we will use is a compilation of 2010 to
2013 direct images of Fomalhaut. These images were
taken by HST Space Telescope Imaging Spectrograph
(STIS) in the blank range. These images were ac-
cessed through [6]. Each year consists of separate vis-
its done at different roll angles, with each visit having
multiple images. This gives us the advantage of al-
lowing us to use the different roll angles as references
for NMF in a similar manner to ADI. The Kalas et
al. data set also includes images of the star Vega,
which also allows us to build more references out of
this much like in RDI. Each of these data sets are ac-
companied by masks that cover the given star, coro-
nagraphs, and diffraction spikes. These masks thus
allow our algorithms to disregard those pixel values
and favor everything else.

2.2 Processing Methods

To analyze the Fomalhaut system data through
NMF, we will be using the NonnegMFPy and
nmf imaging Python packages respectively [14] [10].
The nmf imaging package contains the main code
needed to do a NMF subtraction on exostellar im-
ages, namely functions that calculate the compo-

nents, make the models, find the best factor, and
subtract from the target image by utilizing target
and references as well as their errors, and an arbi-
trary mask to identify the information we are inter-
ested in. To calculate the components and models,
nmf imaging uses the NonnegMFPy package to do
the background NMF work. Rin et al. implemented
NMF in an iterative nature, where each iteration con-
verges to an end condition. For NonnegMFPy this
end condition is a small enough χ2 value, although
one can set a maximum to the number of iterations.
This results in large computation times for data sets
of considerable sizes, thus we have to account for this
by adjusting the algorithm.

2.3 Implementing JAX

To speed up the computational process, we can
either improve our hardware or speed up the soft-
ware. Since NMF still holds long computing times
even with top hardware, improving the software is the
only option. To do so, we use Google’s JAX python
package [11]. JAX works to replace NumPy while im-
proving on run times. This is done by allowing JAX
NumPy code to run on accelerators such as graphics
processing units (GPUs) and tensor processing units
(TPUs). Specifically, our utilization of JAX works by
incorporating TensorFlow’s XLA (Accelerated Linear
Algebra). XLA allows code and matrix operations to
execute using GPU kernels. XLA then fuses differ-
ent matrix operations to run on one kernel, freeing
up other kernels for other operations. This, com-
bined XLA’s ability to stream the operations’ results
off of memory, saves substantial amounts of mem-
ory bandwidth, in turn significantly improving per-

3



formance [7]. These features are translated directly
to JAX, where JAX now applies them to extensive
matrix operations, i.e. NumPy operations. Since
NonnegMFPy’s matrix computations are heavily de-
pendent on NumPy operations, this is the best way
to improve efficiency. Additionally, the JAX pack-
age also includes its Just-In-Time (JIT) functionality.
JIT treats a desired function like a library, working
on them immediately when compiling. It converts the
function into a separate intermediate language that
can then be traced. Variables in this function have all
of the compatible operations on them traced through-
out and recorded. This traced function is then feed to
the XLA compiler all at once, as XLA is optimized to
work with large amounts of code. In the end, our JIT-
ed function and however many times it is called are
run simultaneously at compile time instead of wait-
ing for each function call. JAX JIT then results in
even faster computing times. We replace the Non-
negMFPy NumPy code with their JAX NumPy al-
ternatives to make the package compatible with JAX
and JIT. After determining which function takes up
the most run time, we convert it to being JAX JIT
compatible while maintaining its original functional-
ity. This involves rewriting many of the conditionals
and loops, as JAX JIT is generally incompatible with
their Python built in counterparts.

Implementing JAX and JIT helps runtime most
when building the components and forming the
model. These two processes both depend on the ma-
trix operations of NonnegMFPy, thus benefit from
JAX. Due to how scalable the component building
process is, this often takes up the longest computing
time out of all. The component building process is
detailed in 5, and our results from applying JAX are
shown in 3.

To be able to use nmf imaging, NonnegMFPy,
and JAX together, we made a front-end Python file
that extracts the Fomalhaut data and prepares it for
processing. This is done by first opening the data in
the form of .FITS files using Astropy [1]. Here we
also use the same package to open and extract the
mask data. We then collapse all of the images in
each visit down to one image. These collapsed arrays
are then re-centered around Fomalhaut A. We use
radonCenter [2] to find the star center and pyKlIP
[13] to re-center.

3 Results

3.1 Code improvements

As a big part of our research, improving the ef-
ficiency of the software used to execute NMF is es-

sential to testing the quality of NMF on the Foma-
lhaut system. After implementing JAX NumPy to
the NonnegMFPy code, we determined that the Sol-
veNMF function in this .py file took the longest com-
puting time. This is a result of a while loop that
performed considerable matrix operations with every
iteration. This loop calls another function that re-
calculates the χ2 values. This is done through some
more matrix operations, allowing for the loop to meet
its end condition when the difference in sequential χ2

values is small enough. This work helps us in deter-
mining which function to run JAX JIT on, as JIT
has very specific behaviors that need to be met for
it to run effectively [12]. JIT can also result in di-
minishing returns if it is used on an entire file that
is not catered towards it. After altering the code to
be JIT compatible while still keeping its functional-
ity, some of our preliminary results can be seen in
Table 1. These tests are done for each of the years
in our given Fomalhaut database. We utilize all of
the maximum number of references for each test and
kept the modes to 5 components unless not enough
components could be used. Such is the case for the
2010 data where only 3 modes were used. Each test
is also conducted without data imputation and only
uses the corresponding masks.

These results show that implementing JAX
NumPy and JIT results in significantly lower run
times for the iterative processes of NMF. The un-
certainties were extracted by doing multiple timing
runs to account for the random initial conditions of
NMF. These measurements were done by timing the
entire NMF process, from building the components
to extracting the results from subtraction. Since best
factor finding (if utilized) and subtraction do not uti-
lize any of the JAX impacted code, these portions see
no change in computing time. They still do maintain
a constant computing time throughout our tests, as
they were all done using consistent samples. Table
2 includes the timing comparisons done on just the
functions that are affected when we implement JAX;
component and model building. These results are
consistent with Table 1, as both show significant im-
provements in efficiency. JAX also shows an improve-
ment in consistency for run times, as the uncertainties
for our JAX JIT results are lower relative to their re-
spective values. The difference in times between Ta-
ble 1 and Table 2 demonstrates how much computing
time NMF calculations take. An overwhelming ma-
jority of the computing resources are allocated for
the component and model building functions as com-
pared to any other operations.

4



Figure 2: Single target image plots of Fomalhaut. This includes 2010 (a), 2012 (b), 2013 (c), and 2014 (d)
data.

3.2 NMF implementation on Fomalhaut b

After incorporating JAX and speeding up run
times for our code, we can now efficiently test and
compare the results of NMF. Fig. 2 shows the sin-
gle NMF processed images of the Fomalhaut system
throughout our different HST data sets. (a), (b),
(c), (d) show the processed data from 2010, 2012,
2013, and 2014 respectively. Here we have the PSF
reduction on one target image with the number of
references and components being dependent on the
number of roll angles supplied in each data set. (b),
(c), and (d) were processed using 5 components and
their appropriate masks. (a) was processed using 3
components as this is the maximum we can do for
the number of images given in the 2010 data. These

low component numbers results in a worse PSF re-
duction for the 2010 data as compared to the other
three. Additionally, due to the smaller aspect ratio of
the 2014 data that was provided, the resultant image
is smaller than the rest. This is further amplified by
the re-centering step which cuts off parts of all four
images. We cannot locate any objects that resemble
Fomalhaut b in any of these images, but there is a
faint residue of Fomalhaut’s circumstellar disk. To
extract both of these objects, we perform the post
processing stacking method detailed in 2.

Once we rearrange and stack the images together,
we get the results seen in Fig. 3. Similarly to Fig. 2,
(a), (b), (c), (d) correspond to 2010, 2012, 2013, and
2014 data. The PSF for the 2010 data is prominent

5



Figure 3: Stacked target images of Fomalhaut. Similarly to 3, this consists of 2010 (a), 2012 (b), 2013 (c),
and 2014 (d) data.

compared to the other three images, still a result of
the low component numbers as seen in Fig. 2. Ad-
ditionally, due to the smaller image size of the 2014
data, the resultant image in (d) is also smaller than
the rest. These graphs are comprised of the images
shown in Fig. 2, as well as the remaining target im-
ages. These results show a very prominent circum-
stellar disk around Fomalhaut A. This falls within
our expectations, as NMF has been proven to work
well for these purposes [10].

When we zoom in to where we expect Fomalhaut
b to be [4], we can see objects consistent with Fomal-
haut b in Fig. 4. When analyzing these areas, we see
that Fomalhaut b is not located in every image. For
the 2012 (b) and 2013 (c) data, we notice bright spots
in these areas. We determine that the centermost ob-

ject in (b) is Fomalhaut b. In the case of (c), the ob-
ject slightly off center is Fomalhaut b. The movement
of this spot across time allows us to be confident that
this is Fomalhaut b we are observing instead of PSF
residue. Due to the limited sizes of the 2014 data,
not all of the constituent processed images overlap in
this search region. The resultant image (d) lacks any
prominent spots we can confidently point out to be
Fomalhaut b. Many of the objects seen in this area
are likely PSF residue or the circumstellar disk. We
observe similar behaviour when examining the 2010
data. Due to the lack of sufficient data to make ref-
erences, we can only process the 2010 data with a
maximum of 3 components. The consequence of this
is lower PSF subtraction in our results as compared
to other years. When we observe our search region,

6



Figure 4: Same as Figure 3 using a different contrast and color bias. Zoomed in on the location of where
Fomalhaut b is expected to be. (a) shows the expected location of Fomalhaut b in 2010 with relatively poor
PSF subtraction. (b) shows the 2012 location of Fomalhaut b, with it being very visible. In the 2013 (c)
and 2014 (d) locations, Fomalhaut b is more difficult to locate in their respective regions.

no objects comparable to Fomalhaut b can be seen.
To account for this and other complications, we have
to do further pre and post processing adjustments.

3.3 Component number comparisons

To test the importance of modes number on our
NMF results, we can run our NMF program using dif-
ferent component numbers and compare the results.
Fig. 5 shows this comparison, with the component
number labeled on the bottom left of each result. We
note improvements on the PSF reduction for our re-
sults as the number of modes increase starting at 2.
This improvement starts to plateau as the modes in-
crease past 5. For any number of modes past 8, there
is no visible improvement in PSF reduction.

In Figure 6, we have the results of the region of

Fomalhaut b after varying the component numbers
for our 2013 data. Despite Fomalhaut b being less
prominent as compared to Figure 5, the 2013 data
shows a similar behavior to it. There is a large im-
provement in the PSF reduction as the component
numbers increase before stagnating. Our 2013 data
also shows a comparably worse PSF reduction than
the processed 2012 data.

Figure 7 shows the variations in component num-
bers for the 2010 data set. The PSF reduction for
this dataset is notably worse than the other datasets,
which can primarily be attributed to the low refer-
ence numbers of this dataset. Improvements in the
PSF subtraction are shown as the component num-
bers increase from 2 to 3. For NMF, a correlation
between component number and quality of results is
something we will investigate further 4.

7



Figure 5: 2012 data processed with different component numbers. Images shown are of the location of
Fomalhaut b with the object in the center.

Figure 6: 2013 data processed with different component numbers. Images shown are of the location of
Fomalhaut b.

Figure 7: 2010 data processed with different component numbers. Images shown are of the location of
Fomalhaut b.

8



4 Future Work

Now that we have improved the efficiency of NMF
implementation for exoplanetary data, we hope fur-
ther apply NMF to Fomalhaut b. With its lower uti-
lization of computing resources, we plan to work with
JAXed NMF by changing some of the pre and post
NMF parameters. Our hopes are that we can further
improve on the accuracy of the resultant images and
reduce as much noise as possible.

Once we have consistent reductions and results,
we will do a full investigation on Fomalhaut b. In this
investigation will consist of a comparison of the size
and brightness of Fomalhaut b across the successive
years of our given database. Additionally, we hope
to compare our results with those from point source
methods (KLIP, RDI, etc.). Due to the difference
in nature between NMF and point source processing
methods, if Fomalhaut b is a debris cloud [4] then our
NMF results should be more accurate.

5 Conclusions

Our JAX comprised NMF code shows consider-
able improvements in run time as compared to the
base NMF operations. This helps in the analysis of
any DI source as it speeds up the computing pro-
cess. One of the behaviors that we observed with JAX
NMF is that the comparative run times grow with in-
put data size. NMF and nmf imaging tend to slow
down significantly when using more references and
higher component numbers. While our JAX NMF
does trend to higher computing times under the same
circumstances, the difference in computing times be-
tween JAX and non-JAX NMF grows considerably.
The reasons behind this are due for further investi-
gation in our future work.

Our analysis of Fomalhaut b proved successful in
locating the object after processing with NMF. Foma-
lhaut b is prominent in our 2012 and 2013 data sam-
ples, yet it fails to show definitively in the 2010 and
2014 images. We believe this is a result of the nature
of NMF processing. When making the components
and model, a higher number of references trends to
better building of PSF models that can then be sub-
tracted away. Additionally, the number of modes is
tied to the reference numbers, thus more references
allows for more modes. This then further supports
our image quality, as we examined how lower com-
ponent numbers are correlated with poor PSF sub-
tractions. To account for these errors, we hope to
improve our pre and post NMF methods to collect
better results. See section 4 for more on our future
work.

The code used for our research can be found on
GitHub, where it will be kept updated with our im-
provements in future work.

Acknowledgements

I would like to give my dearest thanks to my
project advisor and primary investigator, Dr. Max
Millar-Blanchaer. His guidance and mentorship were
crucial for the development of this project and my
personal growth. I must also thank my graduate stu-
dent mentor, Connor Vancil, for the consistent sup-
port and advising throughout this entire process. I
would like to show my appreciation to everyone in
the Max Millar-Blanchaer research group for their
kindness and aid, as well as additional thanks to Dr.
Millar-Blanchaer for allowing me to be part of this
group. My dearest gratitude to Dr. Sathya Gu-
ruswamy for organizing the UCSB REU program and
providing me with such a great opportunity, as well
as her continued career guidance and encouragement.
Lastly, I would like to thank the National Science
Foundation for making all of this possible and fund-
ing this opportunity with the grant PHY-1852574.

Appendix

Our JAX version of nmf imaging and Non-
negMFPy is posted to https://github.com/

ivanabreu0/NMF_imagingJAX.

References

[1] Astropy Collaboration et al. “The As-
tropy Project: Sustaining and Growing a
Community-oriented Open-source Project and
the Latest Major Release (v5.0) of the Core
Package”. In: 935.2, 167 (Aug. 2022), p. 167.
doi: 10 . 3847 / 1538 - 4357 / ac7c74. arXiv:
2206.14220 [astro-ph.IM].

[2] Rin Ben and Jason Wang. Determination of
Star Centers based on Radon Transform. 2018.
url: https : / / github . com / seawander /

centerRadon (visited on 08/01/2023).

[3] Thayne Currie et al. “Direct Imaging and Spec-
troscopy of Extrasolar Planets”. In: (2023).

[4] Andras Gaspar and George Rieke. “New HST
data and modeling reveal a massive planetes-
imal collision around Fomalhaut”. In: Pro-
ceedings of the National Academy of Sciences
(2020).

9

https://github.com/ivanabreu0/NMF_imagingJAX
https://github.com/ivanabreu0/NMF_imagingJAX
https://github.com/ivanabreu0/NMF_imagingJAX
https://doi.org/10.3847/1538-4357/ac7c74
https://arxiv.org/abs/2206.14220
https://github.com/seawander/centerRadon
https://github.com/seawander/centerRadon


[5] Paul Kalas et al. “Optical Images of an Ex-
osolar Planet 25 Light Years from Earth”. In:
Science (2008).

[6] Paul Kalas et al. “STIS Coronagraphic Imag-
ing of Fomalhaut: Main Belt Structure and the
Orbit of Fomalhaut b”. In: The Astrophysical
Journal (2013).

[7] Mart́ın Abadi et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015.
url: https://www.tensorflow.org/.

[8] NASA Exoplanet Archive. Exoplanet and Can-
didate Statistics. 2021. url: https : / /

exoplanetarchive . ipac . caltech . edu /

docs / counts _ detail . html (visited on
08/10/2023).

[9] Pentti Paatero and Unto Tapper. “Positive ma-
trix factorization: A non-negative factor model
with optimal utilization of error estimates of
data values”. In: Environmetrics (1994).

[10] Bin Ren et al. “NON-NEGATIVE MATRIX
FACTORIZATION: ROBUST EXTRACTION
OF EXTENDED STRUCTURES”. In: (2018).

[11] The JAX Authors. JAX: High-Performance
Array Computing. 2023. url: https://jax.
readthedocs . io / en / latest / index . html

(visited on 08/01/2023).

[12] The JAX Authors. Just In Time Compila-
tion with JAX. 2023. url: https : / / jax .

readthedocs.io/en/latest/jax- 101/02-

jitting.html (visited on 08/01/2023).

[13] Jason J Wang et al. “pyKLIP: PSF Subtraction
for Exoplanets and Disks”. In: Astrophysics
Source Code Library (2015). url: https://
bitbucket.org/pyKLIP/pyklip.

[14] Guangtun Ben Zhu. “NONNEGATIVE MA-
TRIX FACTORIZATION (NMF)WITH HET-
EROSCEDASTIC UNCERTAINTIES AND
MISSING DATA”. In: (2016).

10

https://www.tensorflow.org/
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://bitbucket.org/pyKLIP/pyklip
https://bitbucket.org/pyKLIP/pyklip

	Introduction
	Methods of image processing
	Non-negative matrix factorization
	Fomalhaut b

	Methods
	Fomalhaut Data
	Processing Methods
	Implementing JAX

	Results
	Code improvements
	NMF implementation on Fomalhaut b
	Component number comparisons

	Future Work
	Conclusions

