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Abstract

The AdS/CFT correspondence is one of the few tools that exists to analyze nonperturbative effects in
quantum gravity. Specifically, the duality allows for the computation of the entropy of a subregion of the
CFT through a relation to an extremal surface in the bulk. However, whether it can be interpreted as an
entropy for the quantum gravity theory is unknown. Recent work has shown in the case of two-boundary
states constructed from the gravitational path integral, a von Neumann algebra can be defined and a notion
of entropy can be computed using said mathematical structure. We generalize this to the one boundary
case, which comes with the added difficulty that the resulting von Neumann algebras are type III and thus
have no trace operation. To circumvent this issue we propose a regulated form of entanglement entropy
and connect this to a replica trick to circumvent the type III nature of the von Neumann algebra.

1 Introduction

Finding a quantum theory of gravity remains one of
the great unsolved problems in physics. One of the
major developments in the field was the discovery
that certain quantum gravity theories are dual to a
class of quantum field theories known as conformal
field theories (CFT). This duality exists such that
certain observables in the quantum gravity theory are
related to other observables in the CFT. One impor-
tant aspect of the so-called AdS/CFT correspondence
is that the CFT lives on the boundary of the dual
quantum gravity theory, providing some geometric
intuition to the relation.

One of the outstanding issues of quantum grav-
ity is a lack of understanding surrounding gravita-
tional entropy. The AdS/CFT correspondence can
perhaps help in this regard due to the relation be-
tween the entropy of a subregion of the boundary
CFT and the area of an extremal surface within the
bulk [1]. The formula that relates these is known as
the Ryu-Takayanagi (RT) formula, which was later
generalized to the quantum extremal surface (QES)
formula [2].

Since we care about the entropy of the quantum
gravity theory, one may wonder what the bulk inter-
pretation of the entropy computed by the RT formula
may be. In a general quantum gravity theory, this
is not currently well understood. The QES formula
can be derived using a gravitational path integral 3|,
which implies this is something worth studying, but
the specifics are unknown.

One of the difficulties in understanding gravita-
tional entropy is that the microstates are a mys-
tery, which makes calculating this observable diffi-
cult. However, looking at the von Neumann algebra
of a system and calculating its entropy is an alter-
native approach to constructing a trace operator and
density matrix to find the von Neumann entropy of
a system. Therefore, von Neumann algebras are a
tool which can be used as a method of calculating
the entropy of a subregion of the bulk theory, which
then can be compared to the RT formula. After a
brief review of path integrals in section two, the con-
struction of the von Neumann algebra of a subregion
of the bulk is tackled in section three. Then, in sec-

tion four, entropy considerations are addressed, and
finally, section five contains a discussion of results.

2 Gravitational Path Integrals

2.1 Path Integrals in Quantum Me-
chanics

It is known that to compute the probability ampli-
tude between two given states in single particle quan-
tum mechanics, the following equation holds [4]:
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Where the right hand side is what is known as a
path integral, a sum over the set, Dz, of all possible
trajectories a classical particle could take with fixed
boundary conditions, where each is weighted by how
close it is to the path which minimizes the classical
action. For more details (and on what follows in this
subsection), see chapter 2 of [4]. However, probability
amplitudes are not the only thing path integrals can
be used for: we can also compute partition functions.
To see this, is is useful to rewrite the probability am-
plitude in (1) using the time evolution operator:

(i tilay,ty) = (xi, tile” 2wy, 1) (2)
With this in mind, we can work backwards from the
definition of the partition function in thermodynam-
ics and make a connection to (2):

Z(8) = Tr(e™ ") = 3 (kle™ " |k)
¢ (3)
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Notice how similar the bra-ket in the right hand side
of the final equality is to the right hand side of (2),
but with 8 = iAt and our initial and final states ex-
isting at the same spatial point. In other words, the
partition function is a sum over all possible trajecto-
ries satisfying periodic boundary conditions at every
possible start/end location, where the time coordi-
nate is multiplied by a factor of i. We are now ready



to write the partition function in quantum mechanics
as a path integral:

Z(8) = Daels dr L(w.i)
PBC

(4)

While it may seem strange at first that path inte-
grals can be used to calculate two different physi-
cal quantities, it is important to keep in mind the
geometric interpretations of the trajectories in both
cases. When calculating transition amplitudes, the
path integral sums over trajectories that look like
curves with unique start and end points. In the case
of the partition function, the start and end points are
the same, which one can think of as gluing the start
and end points of the path integral for the transition
amplitude. To sum over all periodic boundary condi-
tions, we must then sum over all possible places where
the two ends of a trajectory could be sewed together.
Therefore, the difference between calculating transi-
tion amplitudes and partition functions comes down
to fixing certain boundary conditions and specifying
which are summed over.

Lastly, states can be prepared by the path inte-
gral by only specifying the initial boundary condition,
equivalent to summing over all states that start at a
fixed point and end at any other point. This is given
by the equation:

) = Dxefnﬁ dr L(z,&)

(5)

2.2 Path Integrals in Gravity
2.2.1 The Intuitive Approach

With the prior section in mind, the first perspec-
tive on the gravitational path integral will look some-
thing like an adaption of (4) to the gravitational case.
There are a number of technical difficulties associated
with this [5], which we will for the most part avoid
by adopting a new perspective of the path integral
in the next section. There are a few components of
the path integral we will modify for quantum gravity,
which will be obvious by its change in appearance:

C(M) = / D e Sl (6)

In the previous section, trajectories are paths be-
tween spatial states. In gravity, states are given by
spacetime geometries, and a trajectory is a transition
from one spacetime configuration to another. For-
mally, this can be thought of as a change from one
induced boundary metric to another. The reason the
boundary metric specifies our configuration is related
to the action in (6). S is the Einstein-Hilbert action
with the Gibbons-Hawking-York boundary term. It
turns out that gravitational systems with a boundary
can be fully described by boundary quantities, which
is very convenient for the path integral.

2.2.2 The Axiomatic Approach

The reason for the change in notation in (6) on the left
hand side is because, for the purposes of this project,
the gravitational path integral takes on a more ab-
stract interpretation. In the previous section, the
partition function was a function of 3, meaning that
for every possible choice of this value, the path inte-
gral gives a number. In the gravitational case, due
to the geometric interpretation discussed above, the
path integral is now a function of source manifolds
(boundary manifolds with boundary conditions for a

field ¢). So the path integral can be represented more
formally as a function:

¢: X4 C (7)
Where X is the set of source manifolds. Now we will
give (7) a set of axioms that we assume hold for a UV-
complete gravitational path integral. For the rest of
the paper, this and this alone will be the definition of
the path integral we consider. While it might seem
strange to throw out all the physical intuition of the
previous sections for this abstract definition, remem-
ber that this intuition is laden with technical issues.
For a longer discussion on where these axioms come
from, see [6].

Axiom 1 (Finiteness) For any smooth manifold M
with smooth source fields in X%, ((M) < oo

Axiom 2 (Reality) If M € X%, then M* € X1
Furthermore, [((M)]" = ¢(M*)

Axiom 3 (Reflection Positivity) Let n € ZT,
vk € C. If M = E?’lefﬁfy]MLJ, where My ;
denotes a partition of M into two manifolds-with-
boundary Ny,Ny [6], (M) is a non-negative real
number.

Axiom 4 (Continuity) Let M. € X have a region
diffeomorphic to an orthogonal cylinder source man-
ifold C. [0]. C(M.) must be continuous in e.
Axiom 5 (Factorization) Let M;, M, € X
Then ((My U M) = ((M1)((M2)

Axioms 1-3 were discussed in [7] as necessary even
for a gravitational path integral in the form of (6).
The utility of axiom 3 will become apparent when
constructing sectors of the quantum gravity Hilbert
space in the next section. It seems reasonable to ex-
pect the path integral to be continuous under slight
deformations of boundary conditions, hence axiom 4.
Lastly, axiom 5 is physically reasonable and is com-
patible with the idea of « sectors [§].

2.3 Construction of Quantum Gravity
Hilbert Space

This section closely follows the analogous construc-
tion in [6]. Using (7) (along with axioms 1-5) we can
prepare states using ideas similar to what was de-
scribed above for the quantum mechanical case. This
is known as cutting open the path integral [8]. Intu-
itively, this can be thought of as cutting an M € X¢
into two pieces, N7 and Ny (the states), such that
their inner product is given by ((M). There turns
out to be a few technical issues associated with con-
structing a Hilbert space in this manner, which the
remainder of this section is dedicated to discussing.

In general, if open sets of N7 and N; contain sym-
metries, there are multiple ways to glue them back
together into a manifold that may be different than
M. Thus, it is useful to think of N; and Ny with
boundaries N1 = dNy having the additional struc-
ture of a labelling of points on the boundary. Then,
the inner product on the Hilbert space glues the two
manifolds-with-boundary according to this labelling,
eliminating the possibility of multiple gluings for the
same manifolds-with-boundary.

But there is another problem: there is no guaran-
tee through the gluing that the boundary fields will
be continuous. To circumvent this issue we construct
a sector of the quantum gravity Hilbert space where



manifolds-with-boundary have the additional require-
ment of having two boundary dimensions. We define
Hyn as the sector of the quantum gravity pre-Hilbert
space with states from the space of 2 boundary di-
mension manifolds YadN and an inner product defined

by:
(N1|N2) := ((Mn;N,) (8)

Where My:y, denotes the manifold M glued to-
gether by the two manifolds-with-boundary N and
Ns. After completing the quotient of the pre-Hilbert
space with respect to the space of null vectors Ny,
we arrive at Hypy, the sector of the quantum grav-
ity Hilbert space associated with manifolds-with-
boundary with two boundary dimensions.

3 Construction of von Neu-
mann Algebra

Before constructing an operator algebra which acts
on Hyy, we introduce the concept of a von Neumann
algebra and introduce some facts useful for what will
follow.

3.1 Basic facts related to von Neu-
mann Algebras

The first ingredient in a von Neumann Algebra is an
algebra of bounded operators, so to begin, we explore
this concept.

Definition 1 A bounded operator acting on a Hilbert
space H is a map

O:H—H (9)

Such that:
1O1) | < C|l ) |l

where [) € H and C' is a scalar.

(10)

Bounded operators are important because the algebra
they form represents the observables of a quantum
field theory. So the next step is to define this algebra:

Definition 2 An algebra of bounded operators A is
a topological vector space of operators which are con-
tinuous, linear, and bounded over a field K equipped
with an operation given by:

010 0; ) = O1(O2(|¢)))

Where O1,05 € A and |b) € H.

(11)

Self-adjoint operators play a key role in the theory
of quantum mechanics, and thus next we define an
operation which generalizes this notion, known as a
*-operation

Definition 3 A *-operation over an algebra of oper-
ators A is a map * : A — A such that:

(01 + On) = OF + O3 (12)
(010:)" = 0507 (13)
1" =1 (14)

(0" =0 (15)

Where O1,05 € A and 1 is the identity operator

Lastly, the *-algebra defined above (the algebra of
operators with the *-operation) needs to be closed
under the weak operator topology, which defines a
notion of taking limits.

Definition 4 A *-algebra A is closed under the
weak operator topology if a sequence of operators
01,05, ...,0, contained in A converges to an op-
erator O € A. Specifically, the matriz ele-
ments associated with the operator sequence converge:
limy, o0 (¥|On @) = (Y|O|@) If this condition holds
for a *-algebra, it is a von Neumann algebra.

There are three types of von Neumann Algebra fac-
tors (algebras with a trivial center), and any von Neu-
mann Algebra can be written as a direct sum of these
factors. The definitions of the types of von Neumann
algebras are related to projections operators P € A.
For our purposes we will not explicitly give these def-
initions and instead discuss what the trace operation
looks like on the different types of von Neumann al-
gebras. For a more rigorous treatment, see [9]. A
trace is a linear map satisfying Tr(UTOU) = Tr(O)
for O in A and U is a unitary operator in A. Addi-
tionally, there are three other properties that a trace
operation may or may not have which will help us
distinguish between the cases:

1. Faithfulness: Tr(O) = 0 if and only if O =0

2. Semifiniteness: For all positive operators O,
there exists another (nonzero) positive operator
O,, such that O, — 0,, > 0 and Tr(O,,) < oo

3. Normality: Let {p,} be a bounded sequence of
positive operators. Then p = sup, pn implies
Tr(p) = sup, Tr(pa)

Every trace discussed below is assumed to be faithful.
Type I algebras have a normal semifinite trace that,
after normalization, is greater than or equal to 1 for
nonzero projections. Type II algebras have a normal
semifinite trace where Tr(P) € [0,1] or [0,00]. Type
III algebras have no normal semifinite trace (meaning
Tr(P) =0 or o).

3.2 The von Neumann Algebra of
One-Boundary States

3.2.1 Defining the Surface Algebra

In [6], the algebra constructed only acts on the sector
of Hyon where the states (manifolds-with-boundary
from a sliced path integral) consisted of two identical
and disjoint pieces. We instead consider the sector
of the Hilbert space H1 = Hrugr, the Hilbert space
of states with only one boundary. We need to divide
the boundary into two pieces, analogous to having
two disjoint boundaries.

Figure 1: A visual representation of a one boundary
state, with a left and right region mimicking the two
boundary case.

Just as in the original calculation, an operator can
be associated with each N € Y p, where Y . is the
space of one-boundary source manifolds divided into
a left and right side, as seen in figure 1. Multiplication
on the left surface algebra Ay can be defined as:

arb abeYig (16)



Where this operation glues the left boundary of b
to the right boundary of a. The right surface alge-
bra can be defined similarly, gluing the left bound-
ary of b to the right boundary of a. Since we have
already specialized to work in two boundary dimen-
sions, we avoid issues of unmatched extrinsic curva-
ture and specialize to the case where the left and right
boundaries are identical, denoted Y2 5. It would be
interesting to try and recover the same result while
relaxing these two assumptions, but in higher dimen-
sions it seems difficult to have a well-defined gluing
operation. To summarize, the left surface algebra Ay,
is a pair (Y32 5, ') as defined above.

3.2.2 Representation of Surface Algebras on
Hrur

Having constructed a surface algebra, we can now
define a representation that is the final step before
getting the von Neumann algebra. To begin, consider
the action ay, of an operator acting on the pre-Hilbert
space Hpp:

ar, =la-L by V|b) € Hpup (17)
where a € Y 5. Hence, aj, acts on |b) by gluing the
two surfaces together just as discussed in the previ-
ous section. We defer to [6] for the proof that ar,
is well defined on the pre-Hilbert space. Since the
one boundary case lacks a trace inequality, we as-
sume that ar, is well defined after taking the quotient
by the nullspace and is properly extended on the full
Hilbert space Hpyup- This is well motivated by the
fact that in many systems there is only a single ele-
ment of the nullspace N. After this, we are now left
with a representation Ay acting on Hpup. Similarly,
starting with agr, we can define the right representa-
tion Ap using the multiplication - g.

3.2.3 Calculating the von Neumann Algebra

To define the left and right von Neumann algebras
of one boundary operators, simply take the quotient
of the representation constructed above, netting us
AL/NL, and then take its closure in the weak oper-
ator topology. Since we assumed ay, is well defined
on the quotient space, the resulting algebra Aj, (and
Apr) is what we would like to prove is a von Neu-
mann algebra. The largest obstacle in this is proving
that Az only contains bounded operators. There is
no easy way to do this without a sensible trace oper-
ation, and since we don’t expect to be able to define
one on Ay, this makes the task quite difficult. So,
instead, we will further assume that Ay is an alge-
bra of bounded operators. It is possible to define an
involution corresponding to the adjoint of an opera-
tor on the surface algebra (as done in [6]), which can
be naturally extended to Ap. Since we have already
taken the closure in the weak operator topology, this
shows that (with proper assumptions) Ay is a von
Neumann algebra. Due to our construction matching
that of a von Neumann algebra of a subregion of a
quantum field theory, we expect this algebra to be
type III, with no semifinite and normal trace opera-
tion existing on our space.

4 Entropy

Computing the entanglement entropy of operators
will be difficult due to the type-III nature of Ay and
Apg: without a sensible trace operation finding a no-
tion of entropy seems impossible. However, it turns

out our heavy reliance on algebraic quantum field the-
ory will allow us to use the split property [10] to de-
fine a regulator which recovers a sensible notion of
entropy.

4.1 The Split Property

We begin with a quick review of the split property.
In AQFT, the independence of regions of spacetime
goes beyond the Einstein causality condition:
[A2, A3] =0 (18)
Where Aj, A3 are von Neumann algebras of observ-
ables for regions of spacetime 2 and 3, given below:

Figure 2: An example of the split property in quan-
tum field theory, where the independence of the two
regions 2 and 3 can be demonstrated with a collared
region 1.

Instead, assuming there exists a collar region (la-
belled 1 above) surrounding region 2, one can find a
type I factor that splits the algebra As of the algebra
of the larger region A;:

As c N C A (19)
Where N is the type-I factor. With this setup it is
possible to find a map which implements the isomor-
phism

A1 VA3 =2 A ® A;

Which establishes the independence of the two re-
gions. For more details, see [10].

(20)

4.2 Utility of the Split Property in
Quantum Gravity

As a qualification for causality, there are good rea-
sons to expect that the split property requires some
modification in the gravitational setting. But this
is not our use: instead, we introduce a regulator to
setup a system on a one-boundary state where the
split property applies. Then, using the existence of
a type I factor, an algebra with a trace, we can cal-
culate an entropy-like quantity according to section
7 of |11]. Suppressing bulk dimensions, the visual of
what this looks like is as follows:

Figure 3: A proposed regulator for one boundary
states, where the green region contains parts of both
the left and right regions.



Where, without loss of generality, we take the left
region to be the one ”collared” by the finite gap.
Clearly, as € — 0, we get our initial state back. It is
immediately clear that this also solves the biggest is-
sue with the original setup: the shared middle bound-
ary between the two regions. From here on out, we
refer to the construction of section 7 of [11], offer-
ing some speculative ideas as to how this entropy can
actually be computed. This puts our knowledge of
entropy in this setting on foot with quantum field
theory, which while incomplete, is still progress.

It turns out that the type-I factor AV is not unique,
but there is a cannonical choice related to each state
1, Ny. One can then define a quantity known as
the splitting entropy on this type I factor using the
normal von Neumann entropy formula:

S = Tr(pylogpy) (21)

Where py is the density matrix of a state derived

from the canonical choice of Ny. The next step in

this conjecture is that this quantity is related to the

regulated entanglement entropy of the state:
1 1

Skx = 35r = 55vN(Ny) (22)

Finally, this can then all be related to the replica trick

described in section 4 of [11], which links us back to
our original story of path integrals.

5 Discussion

After a short review of path integrals, the space of
states of one boundary (in two boundary dimensions)
was constructed. This is a previously unexplored sec-
tor of the quantum gravity Hilbert space. Next, after
dividing the boundary into two pieces, a von Neu-
mann algebra was constructed in two boundary di-
mensions. Issues with matching extrinsic curvature
seem like they could lead to problems in higher di-
mensions, where new path integral axioms may need
to be introduced in order to fix this problem. Addi-
tionally, two more assumptions were made in defin-
ing the von Neumann algebra in comparison to [6]:
boundedness of operators and, without loss of gen-
erality, the extension of the left surface algebra rep-
resentation aj, after taking a quotient by null states.
Finally, after introducing the split property, we dis-
cuss a conjectured regulator for entanglement entropy
that could help with the type-III nature of the alge-
bra associated with one-boundary states.

Despite being a conjecture, this puts our under-
stand of gravitational entropy (in this sector of the
Hilbert space) on par with that of quantum field the-
ory. This represents an advance in understanding,
but there is still much work to be done. Proving
boundedness of operators would be useful and seems
possible, but more interesting would be to prove the
conjecture discussed in the final section of the paper
relating replica tricks, entropy, and the split prop-
erty. This would advance knowledge of both QFT
and quantum gravity and introduce in a more rig-
orous way a new class of replica tricks that could
be studied in quantum gravity (although any replica
trick is far from rigourous for now).
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