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We report a narrow-line diode laser system developed for increased efficiency of laser cooling on the
689 nm strontium 1S0-

3P1 transition. This forbidden transition has a very narrow linewidth of 7.1
kHz, which requires a laser more stable than most commercial systems offer. To achieve this level
of stability, we implement a Pound-Drever-Hall laser stabilization technique using an ultrastable
cavity locked to a 84Sr transition. We also outline practical techniques for reducing electronic and
mechanical noise on a PDH apparatus. This allows for a decrease in the cooling time and an increase
in our maximum Bose-Einstein condensate size for research in quantum many-body physics.

I. INTRODUCTION

The advancement of laser cooling techniques over the
past 25 years has opened the door to countless ultracold
atom experiments. In particular, strontium has been an
element of active research in numerous fields, such as
precision metrology, quantum information science, and
quantum many-body phenomena [1,2,9]. Much of the in-
terest in Sr relies on the features of the electronic level
structure of alkaline-earth atoms, which make them ideal
systems for the realization of Bose-Einstein condensates
[3]. One of the most common cycling transitions used
to cool strontium atoms is the forbidden 689 nm transi-
tion (Γ/2π = 7.1 kHz). This extremely narrow transition
gives rise to a very low Doppler cooling limit, but also
poses a technical challenge: commercial laser systems are
only stable to ∼20 kHz at best, yielding an inefficient
cooling process on this transition (see Fig. 1 for a vi-

FIG. 1. A comparison of the linewidth of the 7.1 kHz tran-
sition in strontium with the stability of a Toptica DL Pro
ECDL commercial laser system, and the projected reduction
in linewidth with a Pound-Drever-Hall lock.
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sual comparison of linewidths). Hence, a locking scheme
implementing feedback is required to further stabilize a
diode laser below 7.1 kHz and improve the strontium
cooling efficiency.

Among the most widely used locking schemes for
diode lasers is the Pound-Drever-Hall technique, in which
the laser is locked to an ultrastable cavity, which itself
can be locked to an atomic transition using saturation-
absorption spectroscopy [4]. A key feature of this tech-
nique involves the use of an electro-optic modulator
(EOM) to generate rf sidebands on the laser beam. How-
ever, all EOMs contain some degree of residual ampli-
tude modulation (RAM), in which the birefringent crys-
tal of the EOM acts like a Fabry-Perot etalon, causing
unwanted modulation in the amplitude that can drift
throughout the course of a given day [5-7]. This can be
detrimental for the error signal of a laser lock, where any
DC drift will cause the laser frequency to drift as well.
In this paper, we detail the Pound-Drever-Hall (PDH)
method with a dual temperature controlled regime (both
cavity and EOM temperature stabilization) to eliminate
DC drift in the error signal. In addition, we present tech-
niques for acoustic and mechanical isolation for increased
stability of the laser lock.

II. THEORY

A. The Pound-Drever-Hall Technique

A terrific feature of many diode lasers is that they are
tunable, allowing the user to feed an electrical signal into
the laser to control the output frequency within a few
megahertz. If we desire to have a laser which has greater
frequency stability than provided from the manufacturer,
we can use this tunability feature to our advantage. A
general procedure to do so is the following: 1. contin-
uously measure the output frequency of the laser; 2. if
the laser ever drifts down to a lower frequency, convert
this information into an electrical signal to feed back into
the laser to increase the output frequency; 3. if the laser



2

ever drifts up to a higher frequency, convert this informa-
tion into an electrical signal to feed back into the laser to
decrease the output frequency. This will, in effect, hold
the laser frequency approximately constant. It should be
noted that the PDH technique can, in principle, com-
pensate for noise over a wide range of frequencies and is
typically ultimately limited by the electronic filters used
in cleaning the error signal (which yields a lock band-
width on the order of one megahertz). Hence, the drifts
in frequency do not need to be slow in order for the laser
to remain locked – fast jitters and even ‘hiccups’ due to
sudden loud noises, for instance, can also be compen-
sated, making the PDH lock a rather robust approach
for laser stabilization.

In order to apply this technique, we must be able to
measure the output frequency of the laser accurately.
One way to do this is to couple the laser light to a Fabry-
Perot cavity, and measure its transmission or reflection.
A Fabry-Perot cavity acts as an ultra-narrow bandpass
filter for light, only transmitting frequencies which are
an integral multiple of the cavity’s free spectral range
∆νfsr = c/2L, where c is the speed of light and L is
the length of the cavity. Figure 2 shows the transmis-
sion through a Fabry-Perot cavity as a function of the
frequency of incident light. As the finesse of the cavity
is increased, the filter becomes more narrow – the trans-
mission peak becomes sharper. For this reason, it is ideal
to have a high finesse cavity (>1000) for a PDH lock [8].
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FIG. 2. Transmission through a Fabry-Perot cavity for finesse
F = 1, F = 10, and F = 1000. As the finesse increases, the
peak becomes much more narrow.

If we measure the intensity of transmission or reflec-
tion from the cavity, changes in this intensity should cor-
respond to a similar change in laser frequency. Since the
laser is tunable, we have a choice of where on the reso-
nance peak we want to lock. This choice is essential: if
we choose to stabilize the laser at around 50% transmis-
sion and 50% reflection, (red dot in Fig. 3), then we have
inadvertently coupled the frequency of the laser with its
amplitude: changes in the measured intensity might be
from changes in the laser frequency, but they also could

be from fluctuations in the intensity of the laser itself. In
order to remove this issue, we can choose to measure the
reflection of the laser from the cavity, and hold this to
zero (blue dot in Fig. 2). Then, there is no dependence
on the intensity of the laser, so any changes in reflected
intensity are due to drifts in the laser frequency. How-
ever, there is one fatal flaw in this locking scheme: the
reflected intensity of light is symmetric about the cavity
resonance. This means that for a given measured in-
tensity, the only information we acquire is the absolute
value of the difference between the laser’s frequency and
the cavity resonance – we do not know which side of the
resonance we have drifted to. Instead, it turns out that
the phase of the reflected light gives us the information
to know what side of the resonance we are on – it is
antisymmetric about the cavity resonance [8]. Let us di-
verge for a moment to provide a concrete mathematical
treatment as a basis for this statement.
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FIG. 3. Reflection from a Fabry-Perot cavity with a finesse
F = 1000. For reference, 50% reflection and 0% reflection
points are identified as different locations on the resonance
peak to lock the laser to.

The reflection coefficient of light from a lossless Fabry-
Perot cavity is given by

F (ω) = Erefl/Einc =
r(e

i ω
∆νfsr − 1)

1− r2e
i ω
∆νfsr

(1)

where the amplitude reflection coefficient is r, the fre-
quency is ω, and the free spectral range of the cavity
(length L) is ∆νfsr = c/2L [10].
The phase of this complex-valued reflection coefficient

is plotted in Figure 4. Above resonance, the phase of
the reflected light is positive, and below resonance, the
phase of the reflected light is negative. Since the phase
of reflected light relative to the incident light provides
information about how far away from resonance we are
and which side of the cavity resonance we drift to, it
makes for an ideal feedback signal to stabilize the laser.
Unfortunately, there do not exist electronics with a

high enough bandwidth to directly measure the phase of
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FIG. 4. Plot of the phase of the reflected light from the cavity
as a function of laser frequency. The amplitude reflection
coefficient of the mirrors is r = 0.99911. Note that there is a
180 degree discontinuity in the phase as the laser frequency
crosses the cavity resonance.

visible light, so we must design another scheme to indi-
rectly tease out this information. The approach we will
focus on is known as the Pound-Drever-Hall method, in
which the laser is modulated at an rf frequency (typi-
cally with an electro-optic modulator). Modulating the
laser’s frequency (or phase) will generate sidebands with
a definite phase relationship to the incident and reflected
beams. If we interfere these sidebands with the reflected
beam, we get a beat-note at the modulation frequency,
and we can measure the phase of this beat-note, since it
is well within the capabilities of modern electronics. The
phase of this beat-note will then tell us the phase of the
reflected beam.

B. Creating the Error Signal: Measuring the Phase
of Reflected Light

Let us consider the measurement of the phase in math-
ematical detail. An optical carrier at frequency ω which
is phase modulated at frequency Ω, with modulation in-
dex β is given by

Einc = E0e
i(ωt+β sin(Ωt)) (2)

Here, the modulation index is the ratio of the power in
each of the sidebands to the power of the carrier [9,10].

The following Bessel function expansion will help to
elucidate the frequency components of the wave:

eiβ sin θ =

∞∑
m=−∞

Jm(β)eimθ (3)

Using this expansion as an approximation to first or-
der, the field becomes

Einc ≈ [J0(β) + 2iJ1(β) sin(Ωt)]e
iωt

= E0[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t]

(4)

This is an excellent approximation as long as the modu-
lation index β is small. As can be seen from Eq. (4), we
have three beams emerging from the electro-optic mod-
ulator: a carrier with frequency ω, and two sidebands,
with frequencies ω + Ω and ω − Ω. In order to find the
electric field of the light reflected from the cavity, we
simply must multiply each of these components by the
reflection transfer function F from Eq. (1):

Erefl = E0[F (ω)J0(β)e
iωt + F (ω +Ω)J1(β)e

i(ω+Ω)t

− F (ω − Ω)J1(β)e
i(ω−Ω)t)]

(5)
The photodiodes used to detect this light actually mea-

sure the reflected power Prefl = |Erefl|2, however. If we let
P0 = |E0|2 be the total power in the incident beam, then
the power in the carrier is Pc = J2

0 (β)P0 and the power in
each of the sidebands is Ps = J2

1 (β)P0. For small modu-
lation depth β, the majority of the power is in the carrier
and first order sidebands, such that Pc + 2Ps ≈ P0.
After some algebraic simplification, we find

Prefl =Pc|F (ω)|2 + Ps{|F (ω +Ω)|2 + |F (ω − Ω)|2}

+ 2
√
PcPs{Re[F (ω)F ∗(ω +Ω)

− F ∗(ω)F (ω − Ω)] cos(Ωt) + Im[F (ω)F ∗(ω +Ω)

− F ∗(ω)F (ω − Ω)] sin(Ωt)}+ (2Ω terms).
(6)

The Ω terms arise from the interference between the
carrier and the sidebands, and the 2Ω terms arise from
the sidebands interfering with each other. The phase in-
formation we are after is contained within the Ω terms.
In order to recover the phase, we need to demodulate this
signal. In practice, this is accomplished with a mixer, a
device that multiplies two electrical signals together (typ-
ically a double-balanced mixer is used to reduce leakage).
Recall that the product of two sine waves, with one off-
set by an arbitrary phase ϕ, yields the superposition of
a wave with the sum of the arguments and a wave with
the difference of the arguments:

sin(ωt+ϕ) sin(ω′t) =
1

2
[cos((ω−ω′)t+ϕ)−cos((ω+ω′)t+ϕ)]

(7)
If the waves have the same frequency (ω = ω′), this

simplifies to

sin(ωt+ ϕ) sin(ωt) =
1

2
cos(ϕ)− 1

2
cos(2ωt+ ϕ) (8)

Therefore, if we mix the reflected light with the mod-
ulating signal, and then use a lowpass filter to remove
the 2ω component, we are left with a term that only de-
pends on ϕ; we have successfully measured the phase of
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the reflected light. More specifically, in our case we use
a sine wave with amplitude A from a signal generator
with arbitrary (but constant) phase ϕ, and mix it with
the photodetected power in Eq. (6):

ϵ = C1 sin(Ωt+ ϕ) + 2C2 cos(Ωt) sin(Ωt+ ϕ)

+ 2C3 sin(Ωt) sin(Ωt+ ϕ)

= C1 sin(Ωt+ ϕ) + C2[sin(2Ωt+ ϕ) + sin(ϕ)]

+ C3[cos(ϕ)− cos(2Ωt+ ϕ)]

(9)

where
C1 = A(Pc|F (ω)|2 + Ps{|F (ω +Ω)|2 + |F (ω − Ω)|2}),
C2 = A

√
PcPsRe[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)],

C3 = A
√
PcPsIm[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)].

Low pass filtering removes the Ωt and 2Ωt terms,
so that we are left with

ϵ = C2 sin(ϕ) + C3 cos(ϕ)

= A
√

PcPs{sin(ϕ)Re[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)]

+ cos(ϕ)Im[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)]}
(10)

Since A, Pc, Ps, ϕ, and Ω are all constants, we are
left with an electrical error signal ϵ that only depends
on fluctuations in the laser frequency ω. In practice, we
need to also be able to manually adjust the relative phase
ϕ between the modulation signal and photodetected sig-
nal to correct for unequal delays in the two signal paths.
When the phases of these signals are not matched, there
can be significant distortion of the error signal (see Fig.
5). When setting up a Pound–Drever–Hall lock, you can
scan the laser frequency or the cavity length and empiri-
cally adjust the phase in one signal path until you get an
error signal that looks like the ϕ = 0◦ plot in Figure 5.

C. Residual Amplitude Modulation in EOMs

Due to the fact that the manufacturing process of bire-
fringent crystals is not perfect, the phase modulation
from electro-optic modulators can stray from the math-
ematical model. Imperfections on the crystal edges can
cause some light to be reflected, leading to an effective
etalon in which we have interference of reflected beams
with transmitted beams [5-7]. Figure 6 shows this effect.
The interference shows up as amplitude modulation on
the photodetected light, which can severely degrade the
quality of the PDH lock – and hence, the stability of
the laser can be compromised. There are a few methods
which have been implemented by others to combat this
‘residual amplitude modulation’ (RAM), including pur-
poseful misalignment of the laser beam with the EOM
transmission axis [6-7], careful polarization coupling with
the EOM, active DC feedback to rotate the modulator
axis [5], and temperature control of the EOM [6].

The simplest passive method to reduce RAM is to
slightly misalign the laser with the EOM crystal, as

1

0

1

No
rm

al
ize

d 

= 0 = 30 = 60 = 90

1

0

1

No
rm

al
ize

d 

= 120 = 150 = 180 = 210

0.1 0.0 0.1
/ fsr

1

0

1

No
rm

al
ize

d 

= 240

0.1 0.0 0.1
/ fsr

= 270

0.1 0.0 0.1
/ fsr

= 300

0.1 0.0 0.1
/ fsr

= 330

FIG. 5. Plots of the PDH error signal when scanning either
the cavity or the laser, for different phases ϕ between the
mixer inputs. The modulation frequency is Ω = 20 MHz and
the free spectral range is νfsr = 1.5 GHz. The ideal signal that
should be used for locking has ϕ = 0◦, since it has the largest
gradient near resonance, yielding a more effective linear region
to correct for frequency drifts.

shown in Figure 7. Then, light reflecting off of the ends of
the crystal will not be in the same beam path as the main
beam, reducing the interference that leads to unwanted
amplitude modulation.

An active method to remove residual amplitude modu-
lation is to provide DC feedback to the crystal, effectively
rotating the polarization axis to minimize the RAM. One
can photodetect the output of the EOM and lock to the
derivative of this signal. However, because crystals used
for EOMs typically require high rf voltages (>100 V), it is
common to use a resonant EOM in the locking scheme to
remove the requirement of a high-voltage rf driver. (Res-
onant EOMs are simply electro-optic modulators with
a resonant transformer inside, making them only opera-
ble at one rf frequency). Since a DC voltage cannot be
applied to a transformer, this means that DC feedback
is unfortunately not an option for users with resonant
EOMs.

Birefringent crystals are also sensitive to temperature
fluctuations. They can expand or contract as the temper-
ature changes, which likewise changes the optical path
length for light propagating through the crystal. This
can cause a slow DC drift in the error signal through-
out the course of a given day. As such, it can be useful
to control the temperature of the EOM with a thermo-
electric cooler (TEC), in tandem with a PID controller.
More information on control theory and a guide on tun-
ing a PID controller (to select the proportional, integral,
and derivative gain coefficients) with the Zeigler-Nichols
method is given in Appendix A.
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FIG. 6. Diagram of the etalon effect in an imperfect crystal,
leading to residual amplitude modulation in the transmitted
light from an electro-optic modulator.

FIG. 7. Diagram of purposeful misalignment of laser light
with crystal in order to reduce etalon effects.

III. EXPERIMENTAL SETUP

A. Laser System for Pound-Drever-Hall Lock

The typical setup for the Pound-Drever-Hall method
is given in Figure 8. A 689 nm Toptica DL Pro ECDL
(external cavity diode laser) is set incident on a resonant
electro-optic phase modulator (Thorlabs EO-PM-R-20-
C1), where it is phase modulated by a signal generator
(Siglent 2210X) at an rf frequency of 20 MHz. The carrier
(with sidebands) is then coupled to a high-finesse Fabry-
Perot cavity (F ≈ 3000, fused silica plano-concave Lay-
ertec 102468 mirrors, 10 cm fused quartz spacer), such
that the TEM00 mode is maximized. For information
detailing the process of coupling light to a cavity, see Ap-
pendix B. The cavity is placed in an ultra-high vacuum
chamber to provide further isolation from its environ-
ment, and is temperature stabilized with a resistive tape
and an Arroyo 5300 controller. The reflected light is pho-
todetected with a high-bandwidth photodiode (Thorlabs
PDA100A), where it is filtered with a 20 MHz bandpass
filter (Mini-Circuits BBP-20R5+), attenuated, and am-
plified with an rf amplifier (Mini-Circuits ZFL-500LN+).
Here, it is mixed with the modulating signal using a
doubly-balanced mixer (Mini-Circuits ZRPD-1+), whose
relative phase can be controlled with the rf generator.
(The Siglent 2210X has two output channels which can
be internally locked with a phase-locked-loop. One out-
put channel is sent to the EOM for phase modulation,
and the other is sent the mixer for demodulation). This
feature is essential because the phase can significantly

distort the error signal, as detailed in the Theory section
(see Fig. 4). The output of the mixer is then lowpass fil-
tered at 1 MHz (Thorlabs EF508), and a PID controller
servo adjusts the gain of this error signal to achieve maxi-
mal stability. The signal is then fed back into the Toptica
laser to control its output frequency.

FIG. 8. Diagram of the main components for the PDH lock.

In order to provide active stabilization of the cavity
itself (which contains a piezo-electric transducer for cav-
ity length adjustment), we utilize a technique known as
saturation-absorption spectroscopy. Here, we lock to a
84Sr transition as an absolute frequency reference. More
information on this scheme can be found in [9].

B. Electronic, Acoustic and Mechanical Isolation
Considerations

There are, of course, many other sources of noise that
impede on a clean error signal. The most prominent
types can be broken up into three categories: electronic
noise, acoustic noise, and mehanical/vibrational noise.
The latter two can be taken care of with damping mate-
rial (we use a 0.5” polyurethane sheet), placed between
the PDH setup and the optical table it rests on. In par-
ticular, we place the cavity and optical components on
a small optical breadboard (Thorlabs Nexus B1824F),
and set this breadboard on the polyurethane sheet. Ad-
ditionally, one can build an enclosure for the lock with
damping material inside, such as high-density acoustic
foam, to limit noise caused by people talking or compo-
nents being moved around in the lab – or even 120 Hz
flicker from fluorescent overhead light.
The electronic noise can be much more subtle and chal-

lenging to deal with. The best way we have found to re-
move this noise is through the use of an isolation trans-
former. This is a 1:1 transformer with grounded Faraday
shields between the windings to remove high frequency
noise on the power source. It is particularly useful if
there is a high-current power supply nearby, which can
create severe 60 Hz noise on ground loops that otherwise
cause horrific problems for the Pound-Drever-Hall error
signal. It is important to look for all possible locations
for ground loops to exist within the setup. For instance,
some possible locations are in the power cords of pho-
todiodes, the high voltage power of a vacuum ion pump
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for the Fabry-Perot cavity, or even the USB connector
on a CMOS camera. We have experienced all of these as
sources of noise in practice.

The error signal can be viewed by scanning the cavity
length with an internal piezo-electric transducer over a
small range, using a triangle wave. Assuming the change
in the cavity length is approximately directly propor-
tional to changes in applied voltage on the piezo, view-
ing the error signal on an oscilloscope will show the same
signal shape that we would see in frequency space. In
Fig. 9 our actual error signal is pictured, before and af-
ter electronic, acoustic, and mechanical noise reduction
is employed.

FIG. 9. (a) and (b) show the PDH error signal before noise
correction, with (b) taken a few seconds after (a), to show the
timescale of the noise. (c) and (d) show the error signal after
noise correction, also taken a few seconds apart. There is no
longer a visible change on short time scales after the electrical
and mechanical isolation is implemented.

IV. CONCLUSION

In this paper, we have detailed a method to optimize
the Pound-Drever-Hall (PDH) method with temperature
control of both the cavity and EOM to eliminate DC drift
in the error signal. This lock is used for laser cooling on
the strontium 689 nm intercombination transition (col-
loquially called the ‘red MOT transition’). In addition,
we highlighted techniques for electronic and mechanical
isolation of the PDH system for increased stability. This
lock should allow for a reduced cooling time on strontium
atoms and increase the number of atoms we can cool to
a Bose-Einstein condensate, yielding an improved signal-
to-noise ratio on all future experiments with the stron-
tium machine in the Weld lab.

V. ACKNOWLEDGEMENTS

I would like to thank my postdoctoral advisor Toshi
Shimasaki for all his advice throughout the summer,
teaching me countless ‘tricks of the trade’ and instilling

the wise words in me: only change one thing at a time.
I would also like to thank my advisor David Weld for his
kind support, providing motivation and creative ideas for
this project, including the (unfortunately unsuccessful)
RF choke trick (which still stands at an impressive record
of 2-101). Thanks go to all of the incredible members of
the Weld Lab, including Yifei Bai for dealing with my
plethora of single-item orders while maintaining the hap-
piest attitude I have ever seen, to Jeremy Tanlimco for
his helpful thermodynamics knowledge introducing me to
the tastiest food on earth: madeleines, to Roshan Sajjad
for his insistence to help out in any situation and en-
sure we never under-utilize the chop saw, to Quinn Sim-
mons for his computer expertise and his excellent taste
in music, and to Peter Dotti, who taught me how to be
a fantastic kindergarten leader! Finally, I would like to
thank UCSB REU site director Sathya Guruswamy, for
her endless advice and support, ensuring everything ran
smoothly throughout the summer. This work was gener-
ously supported by NSF REU grant PHY-1852574.

Appendix A: Feedback and Control Theory

There are many situations in which it is desired to con-
trol or stabilize a parameter of a dynamical system. The
canonical example is the thermostat, used to control the
temperature in a room. One way in which one might con-
sider accomplishing this task is to apply a simple ‘on-off’
feedback mechanism. This can be described as follows:

u =

{
umax, if e > 0

umin, if e < 0
(A1)

where the error e = s - c is the difference between the
set point s and the current value c, and u is the actua-
tion command (i.e, turning on/off an air conditioner or
heater) [11]. This system will generally oscillate about
the set point, and is only an acceptable option if the os-
cillation is sufficiently small. For many systems, however,
something more stable is required which can eliminate
this oscillation. In temperature control of the Fabry-
Perot cavity in the PDH lock, for instance, this is es-
sential: the fused quartz spacer used has a coeffecient of
thermal expansion of 5.5 × 10−7/◦C, which corresponds
to an 825 kHz change in the frequency of the lowest order
supported cavity mode for a 1◦C change in temperature.
Of course, this will be detrimental when we are looking to
stabilize a laser to below 5 kHz. To control a dynamical
system where stability is paramount, the most common
method is to use proportional-integral-derivative (PID)
feedback.
The first term in PID control is proportional feedback,

which takes the form Kpe, where Kp is the gain of this
term. The further away the current value is from the
set point, the larger this feedback term will be, and as
the current value nears the set point, this feedback will
become smaller. Proportional feedback offers a vast im-
provement over the on-off method, but still suffers the
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drawback that it has a propensity for ‘steady-state error’,
where the system will stabilize to a point below or above
the set point. This is common when there are external
influences consistently driving the system in a certain di-
rection; for instance, when setting the temperature of an
electro-optic modulator to a few degrees above room tem-
perature, if it is not well insulated, heat will constantly
be dissipated as the room attempts to bring the EOM
to thermal equilibrium. This can cause the controller to
stabilize below the set point, never reaching the desired
temperature. To counteract this issue, we can implement
the second term: integral feedback, which takes the form

Ki

∫ t

0
e(τ)dτ . In practice, this is essentially treated like a

running sum which adds the error terms over the full run
time. When utilizing integral feedback, the steady-state
error will always be zero (the longer the control variable
remains below the set point, the larger this feedback term
will become).
A third parameter that can optionally be added is a
derivative term, which is of the form Kd

de
dt . Derivative

feedback is used to predict future error and help the con-
troller remain closer to the set point when disturbances
enter the system. This can be seen clearly in the first
order linear extrapolation of the error to a time td in the
future: e(t + td) ≈ e(t) +Kd

de
dt . In total, then, we have

the following control function:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de

dt
(A2)

In essence, the PID controller implements a feedback
function u(t) which uses as much information on the time
domain as possible: a proportional term which incor-
porates information about the present, an integral term
which incorporates information about the past, and a
derivative term which incorporates information about the
future.

1. PID Tuning with the Zeigler-Nichols Method

As the user of a PID controller, the primary task is
to optimize the gain coefficients Kp, Ki, and Kd for
the given system at hand. Many people have developed
methods to select values for these coefficients, but the
most popular (possibly for its simplicity) is known as the
Zeigler-Nichols method. It should be noted that this is
not always the most robust method, as it does not use a
large amount of process information, but it is sufficient
in many circumstances, at the very least to give the user
a starting point from which small manual adjustments
can be made. The procedure is as follows:

1. Allow the process to reach a steady state without
feedback.

2. Create a ‘step’ function by increasing the input by
a suitable (constant) amount.

TABLE I. Zeigler-Nichols coefficients for proportional, inte-
gral, and derivative gain of a PID controller [12].

Type Kp Ki Kd

P 1/a
PI 0.9/a 0.3Kp/τ
PID 1.2/a 0.5Kp/τ 0.5Kpτ

3. Measure the output (control variable) as it comes
to a new steady state. In conjunction with Fig. 10,
determine the values of τ and a by finding the x and
y intercepts, respectively, of the steepest tangent to
the curve.

4. Use your values for τ and a in Table 1 to determine
the optimal gain coefficients Kp, Ki, and Kd for
your system.
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FIG. 10. Zeigler-Nichols tuning method. Take the steepest
tangent of the unit step response curve: the x-intercept is τ
and the y-intercept is -a.

Appendix B: Coupling Light to a Fabry-Perot Cavity

Coupling light to a Fabry-Perot cavity may seem chal-
lenging at first, but by taking a systematic approach, the
process can be made efficient and rather painless. Before
beginning to couple, it is highly recommended to place
the lens used for cavity mode matching in the beam path,
since it can deflect the beam if inserted after all your
hard work has already been done. Additionally, if possi-
ble, use linearly polarized light into the cavity. This can
be accomplished with a half-wave plate and quarter-wave
plate. If while coupling, you find yourself unable to find
the circular modes, try rotating the linear polarization.
This can help improve the transmission, optimizing the
polarization for your particular cavity. A recommended
procedure to couple to the TEM00 mode is as follows:

1. Scan the cavity with the piezo-electric transducer.
Use a large triangle wave (∼5 Vpp) applied to the
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FIG. 11. (a) Rectangular TEM cavity modes. (b) Cylindrical
TEM cavity modes. (Used from [13]).

piezo driver to scan over as much of a free spectral
range as possible.

2. Set up a CMOS camera (such as a Basler ac1920-
25um) on the output of the cavity to be able to
see transmitted light. Use a long exposure time
(>200000 µs) and a high gain (>12 dB) since the
light will initially be very faint.

3. Walk the beam with two mirrors until you are able
to see light on the CMOS camera. Once you see
fringes, you are very close: these are higher order
cavity modes.

4. At this point, your goal is to find circular/ring
modes. These are cylindrical TEM10, TEM20,
TEM30, etc. Most likely, your fringes are in a
straight line (like a rectangular TEM08 mode, for
instance). See Fig. 11 for a reference of what the
different modes look like. Experiment with the mir-
rors to see which nob(s) bring the fringes closer
together, towards their center. Continue to bring
them closer together until you see circular modes.

5. Now that you have circular modes, decrease the
scanning range (i.e., the voltage of the triangle
wave) to ∼20 mVpp. Manually adjust the piezo
driver voltage slowly as you scan across the full free
spectral range. Continue until you find the TEM00
mode.

6. Increase the scanning range to ∼200 mVpp. Re-
place the CMOS camera with a photodiode (we
use the PDA100A set at 70dB gain), connected
to an oscilloscope. It can be useful to split the
signal used for scanning the cavity, and send it to
the oscilloscope to use for triggering. Make small
adjustments to the mirrors to maximize the peak
height on the scope.

7. Give yourself a pat on the back and crack a big
smile. You have successfully coupled the laser light
to the cavity!
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