

A narrow-line diode laser system for strontium laser cooling

Jacob VanArsdale, Dr. Toshihiko Shimasaki, and Dr. David Weld

Why do we cool atoms?

- Confining atoms in optical lattices gives us great control
- Can create Bose-Einstein Condensates (BECs), reach temperatures on the order of ~100 nK
- Opens door to a quantum playground in experimental physics:
 - Quantum boomerangs
 - Time-reversal of quantum systems
 - Atom interferometry

Using Lasers to Cool and Trap Atoms

- Doppler shifts allow for momentum transfer from photons
- Spontaneous emission is spherically symmetric

689nm Strontium Cooling Transition

• Doppler cooling limit:

 $T_{\text{Doppler}} \propto \text{linewidth}$

- Spin-forbidden transition ($\Delta S \neq 0$) yields very narrow 7.1 kHz linewidth
- Currently can cool to 20 $\mu\text{K},$ but Doppler limit is 200 nK

Strontium energy levels used for cooling

Linewidth Comparisons

Linewidth Comparisons

Linewidth Comparisons

The Pound-Drever-Hall (PDH) Technique

Diode lasers can be tunable!

PDH Technique in Detail

Goal: to see drifts in laser frequency and correct them with feedback

PDH Technique in Detail

Phase is asymmetric about the cavity resonance!

Technical Challenges for Stability

Technical Challenges for Stability

The Challenge: remove unwanted perturbations to system

Cavity Length Stabilization

- 1°C change \rightarrow 825 kHz difference in the lowest order cavity mode
- Temperature control with LabView PID program
- Stable to within 0.005 °C \rightarrow 4 kHz difference!

Electro-optic Modulators and RAM

- Alignment of laser with crystal axis
- DC feedback to rotate crystal axis
- Temperature stabilization with TEC

Residual Amplitude Modulation in EOMs

- Alignment of laser with crystal axis \checkmark
- DC feedback to rotate crystal axis
- Temperature stabilization with TEC

Residual Amplitude Modulation in EOMs

- Alignment of laser with crystal axis
- DC feedback to rotate crystal axis
- Temperature stabilization with TEC

Residual Amplitude Modulation in EOMs

- Alignment of laser with crystal axis
- DC feedback to rotate crystal axis
- Temperature stabilization with TEC \checkmark

Thermo-electric Cooler (TEC)

Electric, Acoustic, and Mechanical Isolation

- 60 Hz noise from high current sources, potential ground loops
 - Isolation transformer removes this issue

- Acoustic noise and mechanical vibrations -
 - Polyurethane sheet, high-density foam
 - Use as much mass as possible for damping

The Error Signal

frequency (free spectral ranges)

Low frequency regime

After noise correction

Before noise correction

Future Research

- Testing the lock this week
 - Measure laser linewidth with self-heterodyne technique
 - Increase maximum atom number in BECs
 - Reach lower temperatures in Doppler cooling stage
- Much more quantum many-body physics research from the Weld lab!

Time-reversal protocol with lattice shaking! (from Yifei Bai) 20

Acknowledgements

David Weld, Advisor

A CALLER THE PARTY OF CALL

Sathya Guruswamy, REU Director

Supported by NSF PHY-1852574

Toshi Shimasaki, Mentor

Backup Slides

Polarization Considerations

The Poincaré Sphere

Effect of Temperature Variation

Characterizing a Fabry-Perot Cavity

Cavity Ring-Down Spectroscopy

Cavity Ring-Down Spectroscopy

The Photodetector Problem

Another method: Cavity Scanning

Free Spectral Range Measurement

Electro-Optic Modulators: Theory of Operation

Electro-optic Modulators: DC feedback

Feedback to Eliminate RAM

