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Quantum chaos has been an intriguing topic for the greater part of the last hundred years, but we
lacked the technology and means to explore it further. The creation of Bose-Einstein condensates in
ultra cold atomic gases in 1995 has given rise to direct and flexible probes of quantum phenomena
at easily measurable scales of length and time. Using this principle, we investigate the potential
for direct observation of chaotic dynamics in quantum systems. We use a numerical simulation to
explore how this chaos presents itself under variable conditions.

I. INTRODUCTION

A. Chaos

In our world chaos appears in a wide variety of situa-
tions. Noticeable examples include: weather patterns,
fluid turbulence, pinball games, and many more. Al-
though there are so many expressions of chaotic behav-
ior in our everyday lives, there is no rigorous definition
of what chaos is. In this paper it will be referred to as
a system where small changes, or perturbations, have an
immense effect on its outcome. The chaos we are familiar
with is called classical chaos and while we have quite a
bit of knowledge on the topic, its counterpart, quantum
chaos, is relatively under explored. We have created a
quantum analog to a classically chaotic system, the Gal-
ton Board (1), to probe how quantum chaos strays from
a classical system.

1. Classical

Classical chaos is the nature of our world at a macro-
scopic level where small changes can have greater oppor-
tunity to create a “butterfly effect” and cause an outcome
significantly different from its initial state. In many of
these classically chaotic systems it is impossible to de-
termine all of the conditions that influence a particular
outcome. However, with precise trajectories and accu-
rate measurements one could hope to accurately predict
the outcome within some margin of error. With so many
methods and techniques to analyze a classically chaotic
system the goal of our research was to try to find a con-
nection between classical and quantum chaos.

2. Quantum

The correspondence principle tells us that as a sys-
tem becomes more macroscopic quantum phenomena and
properties should approach the behavior of a classical

FIG. 1. This is a depiction of a classically chaotic system, the
Galton board. It is a board covered in pegs with a spot at the
top for a ball to be dropped. The ball then takes a random
walk to the bottom where it lands in one of the spaces. [3]

system. This should mean that we can expect the same
for chaos as well. Classical chaos has been described as
the immense changes that result from the trajectories in
a system, but quantum chaos is not so easily defined.
When considering a quantum chaotic system each parti-
cle has a multitude of possible trajectories which makes
the term “trajectory” ill-fitting in this sense. So in order
to consider a definition that doesn’t stray too far from
the classical one we can describe quantum chaos in terms
of the phase space or energy space [2].

B. Bose-Einstein Condensates

In order to create our “quantum Galton board” we
need a ball to propagate through the board. Which
is where Bose-Einstein Condensates (BECs) become ex-
tremely useful. A BEC is a phase of matter in which
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every atom has the same quantum state. By using a
large number of particles it becomes much easier to ex-
perimentally observe quantum concepts at a macroscopic
level. After cooling a gas to within a few nK of absolute
zero it becomes a quantum gas. At which point the par-
ticles in the cloud are all in a minimum velocity state.
We can see this in Figure 2 with the velocity distribution
of a rubidium BEC.

FIG. 2. This is a graphical representation of a rubidium BEC.
The velocity distribution shows that the colder you get the
atoms in the cloud the closer they get to their minimum ve-
locity state. At their minimum velocity the particles all want
to be in the ground state which creates the Bose-Einstein
Condensate. Every atom in the BEC cloud is in the ground
quantum state and therefore also each has the same wave
function describing their existence. [1]

Another important reason to use a Bose-Einstein Con-
densate for this project is because we are trying to ob-
serve the time evolution of the cloud’s wave function.
A large issue arises in quantum mechanics when a wave
function is observed: it collapses to a single probability.
However, with a BEC this is not such a detrimental flaw
to the experiment due to the large number of particles
in the cloud 1. As they collapse they will statistically
distribute themselves according to their common wave
function and allow us to get a representation of an unob-
served particle evolving in time.

C. The Manhattan Lattice

Arguably the most important step in creating our ver-
sion of the Galton board is the peg-board on which the
system propagates. An optical lattice is used in our
simulation and experimental setup. This optical lattice
has been aptly named the Manhattan Lattice (Figure 3)

1 8× 104 ± 10%

for its “streets” of low constant potential energy and its
“skyscrapers” of high potential energy.

FIG. 3. The Manhattan Lattice: Grid of standing waves of
light, an optical lattice, where a BEC is constrained and then
allowed to scatter.

The potential for the lattice can be described in 2-D
by the following:

V̄ (x̄, ȳ) =
1
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Where VX and VY are each the potential energy depths
of the lattice in each direction, kL is the wave number of
the lasers in the beams, and the bars represent dimen-
sionalized values. With beams of equal power in each
direction the equation becomes [5]:

V̄ (x̄, ȳ) =
1
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1

2
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+ 2V0 cos (2kLx̄) cos (2kLȳ) (1)

With a rigorous definition for the potential energy in the
lattice beams we can discuss the experimental and the-
oretical methods driving the simulations and results of
our research.

II. METHODS

Although there is a large divide in physics research be-
tween experiment and theory, in order to progress in the
name of science we must acknowledge the usefulness and
contributions of both. This project involves heavy use
of both aspects to function and thus will be outlined in
this section. Both of the following two sections were the
driving force behind the simulation program with which
I conducted my research.
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FIG. 4. An image of the Strontium Machine at Weld Lab, UCSB. [6]

A. Experiment

The experiment in a lab environment involves creating
a BEC and then imaging the wave function as it scatters
in the Manhattan lattice. To create the BEC in Weld Lab
at UCSB a cloud of atoms are optically cooled to near
absolute zero. The cloud becomes a BEC after reaching
the condensation temperature described by the atoms’
mass and the cloud density. At this point the cloud is
cold enough to condense into a common ground state.
This process takes place throughout a number of steps
within the Strontium Machine.

Experimentally, creating the BEC is only the first step
for this system. In the near future Peter Dotti at Weld
Lab hopes to use lasers to realize a lattice2 of this nature.
Then through the use of the Strontium Machine to create
a 84Sr BEC the chaotic dynamics of the system can be
imaged as the cloud scatters throughout the lattice.

III. SIMULATION

The simulation process involves creating a BEC cloud
in an initial state within the Manhattan lattice and then
allowing its wave function to evolve over time. In order
to keep our procedure similar to that of the Galton board
the simulation also involves a ramp phase in which the
energy of the system is decreased, otherwise our Galton
board comparison is meaningless and we are no longer
examining the physics of quantum chaos.

2 Although the Manhattan Lattice is referred to as such, it is not
a lattice in the typical sense because it does not hold atoms in
local minima. This terminology is used to draw a connection
between the similar geometry of each.

Beginning with the wave function consistent with the
optical dipole trap (ODT) potential we can use a har-
monic oscillator to model the system numerically. While
ignoring particle interactions we find that the BEC after
condensation is a ground state harmonic oscillator and
can be used for our initial state. With a result of solving
the Schrödinger Equation at time and position 0 we can
finally begin the time evolution of our system.

A. Ramp and Free Evolution

The next step in the process is to ramp the potential
energy of the lattice slowly over a short period of time.
This portion of the procedure is essential to observing the
dynamics of the system. Of course we could start with an
initial wave function, release the optical dipole trap, and
observe its propagation, however, this is contradictory to
our goal of examining a low energy chaotic structure. In
addition, at such high energies it becomes much more
difficult to effectively record useful data when the parti-
cles scatter so quickly. The solution then is to make sure
that the cloud can fully interact with the lattice and be
imaged properly. This is the ramp phase mentioned pre-
viously. By slowly increasing the potential of the lattice
underneath the BEC for around 80-100 ms, or until Vlat

approaches that of the ODT, we can explore the chaos of
a low energy system.

Once the ramp period is finished, the wave function
has its trap removed and the particles are then allowed
to scatter in its free evolution phase. This segment of
the simulation is imperative to researching the dynam-
ics because it is during this frame where the interesting
chaotic structures may appear. Some constraints should
be kept in mind for the free evolution period however,
namely, should the wave function encounter the edge of
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FIG. 5. This is an image made from 6 frames of a gif simulation with a large force applied at 45 degrees to the horizontal. You
can see that the wave function exhibits high frequency Bloch oscillations.

the defined meshgrid issues arise3.

IV. EXPLORING CHAOS

After the development of the simulation in Summer
2020 by Addison Hartman, the logical next step was to
start searching for signatures of chaotic dynamics using
the quantum platform that was created.

A. Applying a Force

In order to uphold our quantum Galton board anal-
ogy we began by applying an arbitrary force to the wave
function as it evolves to see what effects are introduced.
Beginning with a weak force I ran simulations using many
different angles, oscillator lengths, and time steps. The
goal was to observe interesting or unique dynamics in
the lattice sites over the course of the simulations, how-
ever, simulating a small mesh size introduced some issues
and prevented a realistic physics simulation environment.
These issues will be described in greater detail later.

After testing extensively with weak forces we per-
formed many of the same simulations with forces at dif-
ferent orders of magnitude. This change introduced some
unexpected results which are outlined in §VA.

3 See §IVB for more detail.

B. Boundary Effects

As stated previously, some issues were encountered
when trying to simulate a smaller sized mesh of points,
namely, these issues are boundary effects. These occur
when the position-space evolution of the wave function
encounters the edge of the defined meshgrid of points
that the computer has generated. Thus, when the com-
puter tries to propagate the next step in time it misinter-
prets the data and causes the wave function to appear as
though it is ”reflecting” backwards, similar to a wave in
a pool hitting a wall. Other boundary effects include the
spikes appearing on opposite walls and generally intro-
ducing dynamics that are nonphysical. These nonphysi-
cal results threw a wrench in our progress and prevented
any real results to be uncovered for quite some time.

One way to mitigate these troubles is to end the simula-
tion before the wave function has the chance to encounter
these effects. However, this solution limits the ability of
our program to simulate larger systems with dynamics
that take longer to introduce themselves. Which left us
with one option: simulate a larger mesh size. Although
this solution removes the physical issues of the simula-
tions, using a significantly larger mesh requires enormous
amounts of computing power and can easily overflow a
personal computer’s RAM capabilities.

1. The Cluster

In order to create these large simulations without
putting a massive toll on the hardware of my own laptop,
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we decided to move our code onto the UCSB Center for
Scientific Computing computer cluster. With hundreds
of cores and leagues more RAM we could run a signifi-
cantly larger mesh at no cost to my own resources. After
finally eliminating any withstanding problems with our
program we were able to begin looking deeper into the
dynamics of these chaotic systems and find some results.

V. RESULTS

Exploring the many different parameters provided us
with the data to draw some conclusions, but also left a
few new questions in its wake. The tests that were run
with differing angles of force being applied showed no sig-
nificant or interesting behavior as one might expect from
the analogy created by our quantum Galton board. We
had anticipated the emergence of chaotic behavior sim-
ilar to that of classical chaos, however, the difference in
force angle seemed to have little to no profound effect.
In contrast, the force magnitude seemed to produce the
most surprising results. There is a large disparity in the
dynamics when strong and weak forces are applied. We
noticed that for low force values (on the 10−3 or smaller
magnitude) the particles in the BEC behaved ballisti-
cally as we would expect. They moved in a manner that
was indicative of the direction of the force being applied.
However, for larger forces we saw the wave function be-
having as Bloch oscillations.

A. Bloch Oscillations

Bloch oscillations in position space were first physically
observed by the members of the Weld Lab at UCSB, and
first predicted in 1929 by Felix Bloch. This phenomena
occurs when particles under a constant force are also be-
ing affected by a periodic potential [4]. The combination
of the applied force and potential lattice cause the par-
ticles’ momentum to also behave periodically. We saw
these oscillations in our simulations when a strong force
is applied, and, proportionately, stronger forces applied
yields a higher frequency of oscillation. In figure 5 you
can see these high frequency oscillations in the wave func-
tion. In the future it will be important to look further
into the appearance of these Bloch oscillations without
necessarily trying to simulate them, as well as the differ-
ences in strong and weak forces and how they induce this
type of behavior.

B. Incommensurate Mesh

Another important discovery made during the course
of this project was the importance of having a commensu-
rate mesh, or that the meshgrid points and lattice min-
ima occur at rational multiples. Since the Manhattan
Lattice is not a typical lattice and particles are not held

FIG. 6. Image created to show how having irrationally space
lattice sites causes the rationally spaced meshgrid points to
occur in an incommensurate nature.

in these minima, it becomes ever more important for the
“streets” to be constant low potential to observe the dy-
namics we are looking for. However, we noticed that due
to the irrationality of

√
2, the angle that the meshgrid is

created at compared to the lattice causes the simulation
to behave in an undesired manner. Thus, the logical so-
lution was to rotate the Manhattan Lattice by 45 degrees
so that the irrationality is no longer an issue. We are not
completely certain whether or not this problem could in-
validate our previous data so extensive re-testing of some
of the more interesting simulations is necessary to fully
explore this chaotic system. Although after changing to
a commensurate mesh I re-evaluated the force being ap-
plied at different angles, yet we saw nothing new to report
on that avenue. Therefore we can conclude that varying
the angle of the applied force yields little to no effect
on the chaotic outcome, however, the magnitude has a
significant bearing on the wave function’s behavior.

VI. FURTHER WORK

The term length for the REU program at UCSB has
ended, howver, there is still a great deal of work to be
done on this project. The simulations are still yet to be
perfected and need to be looked at more carefully in a
physical sense. One way to further improve upon the
computations being done would be to add particle in-
teractions. The velocity of ultracold atoms is so small
that these interactions may be few and far between, but
including them may give rise to some yet to be seen
chaotic behavior within the BEC. To do so, solving the
Gross-Pitaevskii equation, or GPE, as opposed to the
Schrödinger equation as well as using a Thomas-Fermi
distribution instead of a quantum harmonic oscillator are
necessary.
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Another step in the future is to use the commensurate
mesh to look at some of the previously attempted simula-
tions. It may be valuable to ensure that “no stone is left
unturned,” so to speak. Specifically, it would be inter-
esting to vary the cloud size and look at the interference
that the wave function may exhibit in the lattice sites.
Potentially researching more into the causes behind the
appearance of Bloch oscillations in our simulations is an-
other lucrative avenue to pursue. Perhaps this dichotomy
between strong and weak forces is an error in our system,
or maybe it is an unforeseen effect of our solution and
evolution of the wave function. Lastly, in the future a
laboratory setup for this experiment is pertinent to look
even deeper into the nature of a quantum chaotic system.
Although there is bound to be many more challenges pre-
sented to this project, the field of quantum chaos is rich
with discovery waiting to happen.

VII. ACKNOWLEDGEMENTS

I would like to thank David Weld for advising me for
the duration of this project and helping me to compre-
hend the difficult material I had to overcome as well as
providing the guidance necessary to make my research
fruitful. I would like to thank my graduate mentor Peter
Dotti for the help he provided on any subject I was strug-
gling from Matlab to quantum mechanics. The Weld
Lab for welcoming me as apart of the group, inviting
me to their weekly meetings, and providing assistance
when necessary. Finally, I would like to thank Sathya

Guruswamy, the UCSB REU Program Director, for mak-
ing remote participation in this REU Program a huge
success and extremely pleasant. The organized events
and professional development sessions really motivated
me to stay engaged. This research opportunity was sup-
ported by NSF REU grant PHY-1852574. Additionally,
use was made of the computational facilities administered
by the Center for Scientific Computing at the CNSI and
MRL (an NSF MRSEC; DMR-1720256) and purchased
through NSF CNS-1725797.

FIG. 7. Image created to show how rotating the lattice 45 de-
grees can remove the undesired effects of an incommensurate
grid, thus creating a commensurate simulation.
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