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Any object entering a black hole will inevitably arrive at the 
singularity, where the spacetime curvature becomes infinite, and all of 

our understanding of physics breaks down.
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Why Study Black Holes in String Theory?
One of the longstanding puzzles in physics is quantum 
gravity—reconciling Einstein's theory of gravity with 
quantum mechanics.

Black holes are considered to be the best source of clues 
to a more fundamental theory of quantum gravity (e.g., 
Black hole information paradox).

String theory, as a candidate theory of quantum gravity, 
has proven to be a useful tool for understanding this 
puzzle (e.g., providing a microscopic description of 
black hole entropy via -branes with Ramond-Ramond 
charge).

p
Steven Hawking (1942 - 2018) 
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III: Story of an Infalling and Asymptotic 
Observer
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Asymptotic Flatness
The black brane spaceUme tends to flat 

Minkowski space at large r

Why do the flanges look curved even though 
the spaceUme is flat very far away?

Deforming a surface in only one direcUon 
does not change the intrinsic geometry!

Flange

Flanges represent the two 
asymptoUc regions.

FlangeY
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 with  held fixed) as we vary ?
β → ∞

rH → 0 Q p

Analysis of causal structure shows that for 
, the extreme black brane contains a 

timelike singularity, whereas it has a null 
singularity for .

p = 6
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Do spacetime embedding diagrams know 
about this?

Conformal diagram for the extreme six-brane.

Conformal diagram for the extremal branes with p < 6.
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Wormhole
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